login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321749 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in h(u) or, equivalently, the coefficient of h(v) in e(u), where H is Heinz number, e is elementary symmetric functions, and h is homogeneous symmetric functions. 1
1, 1, -1, 1, 0, 1, 1, -2, 1, 0, -1, 1, -1, 1, 2, -3, 1, 0, 0, 1, 0, 1, 0, -2, 1, 0, 0, 1, -2, 1, 1, -2, -2, 3, 3, -4, 1, 0, 0, 0, -1, 1, -1, 2, 2, 1, -1, -3, -6, 6, 4, -5, 1, 0, -1, 0, 1, 2, -3, 1, 0, 0, -1, 2, 1, -3, 1, 0, 0, 0, 0, 1, 1, -2, -2, -2, 6, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Row n has length A000041(A056239(n)).

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

LINKS

Table of n, a(n) for n=1..79.

Wikipedia, Symmetric polynomial

EXAMPLE

Triangle begins:

   1

   1

  -1   1

   0   1

   1  -2   1

   0  -1   1

  -1   1   2  -3   1

   0   0   1

   0   1   0  -2   1

   0   0   1  -2   1

   1  -2  -2   3   3  -4   1

   0   0   0  -1   1

  -1   2   2   1  -1  -3  -6   6   4  -5   1

   0  -1   0   1   2  -3   1

   0   0  -1   2   1  -3   1

   0   0   0   0   1

   1  -2  -2  -2   6   3   3   3  -4  -4 -12  10   5  -6   1

   0   0   0   1   0  -2   1

For example, row 14 gives: h(41) = -e(41) + e(221) + 2e(311) - 3e(2111) + e(11111).

CROSSREFS

Row sums are A036987.

Cf. A005651, A008480, A048994, A056239, A124794, A124795, A135278, A319191, A319193, A321742-A321765.

Sequence in context: A053259 A273107 A194329 * A143842 A092876 A187360

Adjacent sequences:  A321746 A321747 A321748 * A321750 A321751 A321752

KEYWORD

sign,tabf

AUTHOR

Gus Wiseman, Nov 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 12:51 EST 2021. Contains 349394 sequences. (Running on oeis4.)