login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092876 Expansion of q * (f(-q, -q^12) * f(-q^3, -q^10) * f(-q^4, -q^9)) / (f(-q^2, -q^11) * f(-q^5, -q^8) * f(-q^6, -q^7)) in powers of q where f(, ) is Ramanujan's general theta function. 4
1, -1, 1, -2, 1, 0, 1, 1, -1, -2, 0, 0, 2, 2, -3, 2, -6, 3, 1, 2, 2, -2, -4, 0, -2, 5, 7, -8, 6, -16, 7, 1, 6, 6, -7, -10, 1, -2, 11, 14, -17, 12, -34, 16, 3, 12, 11, -12, -22, 1, -6, 24, 30, -36, 25, -70, 32, 6, 25, 24, -26, -42, 2, -10, 45, 56, -68, 48, -132, 60, 12, 45, 43, -46, -78, 4, -22, 84, 106, -126, 89, -242, 110, 20, 84, 80 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Euler transform of period 13 sequence [-1, 1, -1 ,-1, 1, 1 ,1, 1, -1, -1, 1, -1, 0, ...].

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v + u*v^3 + u^3*v^2 + 2*u*v * (1 - u + v + u*v).

G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3*v * (3 + 3*v + v^2) + 3*u^2*v * (v^2 + v - 1) + u*v * (1 - 3*v + 3*v^2) - (u^4 + v^4)

G.f.: x * Product_{k>0} (1 - x^k)^Kronecker(13, k).

a(n) = A214157(n) - A133099(n) unless n=0. - Michael Somos, Jul 05 2012

Convolution inverse is A214157.

EXAMPLE

G.f. = q - q^2 + q^3 - 2*q^4 + q^5 + q^7 + q^8 - q^9 - 2*q^10 + 2*q^13 + 2*q^14 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ q Product[ (1 - q^k)^KroneckerSymbol[ 13, k], {k, n - 1}], {q, 0, n}]; (* Michael Somos, Jan 17 2015 *)

PROG

(PARI) {a(n) = if( n<1, 0, n--; polcoeff( prod( k=1, n, (1 - x^k)^kronecker( 13, k), 1 + x * O(x^n)), n))}; /* Michael Somos, Oct 24 2005 */

(PARI) {a(n) = my(A, u, v); if( n<0, 0, A = x; for( k=2, n, u = A + x * O(x^k); v = subst(u, x, x^2); A -= x^k * polcoeff( u^2 - v + u*v^3 + u^3*v^2 + 2*u*v * (1 - u + v + u*v), k+1) / 2); polcoeff(A, n))};

CROSSREFS

Cf. A133099, A214157.

Sequence in context: A194329 A321749 A143842 * A187360 A334368 A240718

Adjacent sequences:  A092873 A092874 A092875 * A092877 A092878 A092879

KEYWORD

sign

AUTHOR

Michael Somos, Mar 09 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 05:33 EST 2021. Contains 349426 sequences. (Running on oeis4.)