The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092877 Expansion of (eta(q^4) / eta(q))^8 in powers of q. 10
 1, 8, 44, 192, 718, 2400, 7352, 20992, 56549, 145008, 356388, 844032, 1934534, 4306368, 9337704, 19771392, 40965362, 83207976, 165944732, 325393024, 628092832, 1194744096, 2241688744, 4152367104, 7599231223, 13749863984 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith) Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q * (psi(-q) / phi(-q))^8 = q * (psi(q^2) / psi(-q))^8 = q * (psi(q) / phi(-q^2))^8 = q * (psi(q^2) / phi(-q))^4 = q * (chi(q) / chi(-q^2)^2)^8 = q / (chi(-q) * chi(-q^2))^8 = q / (chi(q) * chi(-q)^2)^8 = q * (f(-q^4) / f(-q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jun 13 2011 Euler transform of period 4 sequence [ 8, 8, 8, 0, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2. G.f.: x * (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^8. G.f.: theta_2^4 / (16*theta_4^4) = lambda / (16 * (1 - lambda)). G.f.: exp( Integral theta_3(x)^4/x dx ). - Paul D. Hanna, May 03 2010 a(n) = (-1)^n * A005798(n). a(2*n) = 8 * A014103(n). - Michael Somos, Aug 09 2015 Convolution inverse of A124972, 8th power of A001935, 4th power of A001936, square of A093160. - Michael Somos, Aug 09 2015 a(n) ~ exp(2*Pi*sqrt(n))/(512*n^(3/4)). - Vaclav Kotesovec, Sep 07 2015 a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A046897(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017 EXAMPLE G.f. = q + 8*q^2 + 44*q^3 + 192*q^4 + 718*q^5 + 2400*q^6 + 7352*q^7 + 20992*q^8 + ... MATHEMATICA a[ n_] := If[ n < 0, 0, SeriesCoefficient[ -InverseEllipticNomeQ[ -x] / 16, {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *) a[ n_] := If[ n < 0, 0, SeriesCoefficient[ With[ {lambda = ModularLambda[ Log[x] / ( Pi I)]}, lambda / (16 * (1 - lambda))], {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *) a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] / QPochhammer[ q])^8, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *) a[1] = 1; a[n_] := a[n] = (8/(n-1))*Sum[DivisorSum[k, Identity, Mod[#, 4] != 0&]*a[n-k], {k, 1, n-1}]; Array[a, 26] (* Jean-François Alcover, Mar 01 2018, after Seiichi Manyama *) eta[q_]:= q^(1/6) QPochhammer[q]; a[n_]:=SeriesCoefficient[(eta[q^4] / eta[q])^8, {q, 0, n}]; Table[a[n], {n, 4, 35}] (* Vincenzo Librandi, Oct 18 2018 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( x * prod(k=1, (n+1)\2, (1 + x^(2*k)) / (1 - x^(2*k-1)), 1 + x * O(x^n))^8, n))}; (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^8, n))}; (PARI) a(n)= { local(A); n--; A=x*O(x^n); polcoeff((eta(x^4 + A)/eta(x + A))^8, n); } { for(n=1, 1000, write("b092877.txt", n, " ", a(n)); ); } \\ Harry J. Smith, Jun 21 2009 CROSSREFS Cf. A001935, A001936, A005798, A014103, A093160, A124972. Sequence in context: A341386 A181358 A005798 * A160521 A277958 A283077 Adjacent sequences:  A092874 A092875 A092876 * A092878 A092879 A092880 KEYWORD nonn AUTHOR Michael Somos, Mar 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 19:53 EDT 2021. Contains 343903 sequences. (Running on oeis4.)