login
A160521
Coefficients in the expansion of C^7/B^8, in Watson's notation of page 106.
7
1, 8, 44, 192, 726, 2457, 7648, 22220, 60993, 159478, 399906, 966600, 2261630, 5139897, 11378988, 24598683, 52033372, 107890610, 219630050, 439535138, 865784403, 1680352500, 3216454360, 6077280123, 11343018559, 20928404349, 38194869384, 68989715838
OFFSET
0,2
LINKS
Watson, G. N., Ramanujans Vermutung ueber Zerfaellungsanzahlen. J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
FORMULA
See Maple code in A160458 for formula.
a(n) ~ sqrt(11) * exp(Pi*sqrt(22*n/5)) / (2500*n). - Vaclav Kotesovec, Nov 28 2016
EXAMPLE
x^27+8*x^51+44*x^75+192*x^99+726*x^123+2457*x^147+7648*x^171+...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^7/(1 - x^k)^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
CROSSREFS
Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), this sequence (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).
Sequence in context: A181358 A005798 A092877 * A277958 A283077 A023007
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 13 2009
STATUS
approved