login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160524 Exceptional class of numbers n such that p(5n+4) == 0 mod 25, where p() = A000041(). 2
8, 15, 17, 37, 41, 46, 51, 53, 55, 65, 75, 77, 102, 106, 110, 116, 130, 131, 138, 140, 147, 157, 158, 165, 166, 167, 178, 180, 183, 192, 197, 217, 222, 225, 233, 235, 251, 258, 285, 287, 302, 310, 315, 321, 325, 328, 333, 336, 340, 355, 368, 371, 377, 380, 393, 416, 418, 420, 430, 432, 441, 447 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The unexceptional class consists of the numbers n == 4 mod 5.

(p(5*a(m) + 4)/25: m >= 1) = (3007, 553946, 1999837, 61090943985, 341143252095, 2634063438811, 18381830017947, 38993374797785, 81633034103003, ...) - Petros Hadjicostas, Sep 23 2019

LINKS

Table of n, a(n) for n=1..62.

Watson, G. N., Ramanujans Vermutung √ľber Zerf√§llungsanzahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see p. 113.

MAPLE

isA160524 := n -> 0 = modp(combinat:-numbpart(5*n + 4), 25) and 4 <> modp(n, 5):

select(isA160524, [$1..200]); # Petros Hadjicostas, Sep 23 2019

CROSSREFS

Cf. A000041, A071734, A327713, A327714.

Sequence in context: A300860 A031103 A179107 * A161541 A247081 A133157

Adjacent sequences:  A160521 A160522 A160523 * A160525 A160526 A160527

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 13 2009

EXTENSIONS

More terms from Petros Hadjicostas, Sep 23 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 16:22 EDT 2020. Contains 337443 sequences. (Running on oeis4.)