login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247081
Positive integers k such that the numerator of the harmonic mean of the nontrivial divisors of k is equal to k.
3
8, 15, 18, 21, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 77, 81, 85, 87, 91, 93, 95, 99, 111, 115, 117, 119, 123, 128, 129, 133, 141, 143, 145, 147, 153, 155, 159, 161, 162, 171, 175, 177, 183, 185, 187, 201, 203, 205, 207, 209, 213, 215, 217, 219, 221, 235
OFFSET
1,1
COMMENTS
No primes are in this sequence.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2500 from Colin Barker)
EXAMPLE
18 is a term because the nontrivial divisors of 18 are [2,3,6,9] and 4 / (1/2 + 1/3 + 1/6 + 1/9) = 18/5.
MATHEMATICA
Select[Range[235], CompositeQ[#] && Numerator[(DivisorSigma[0, #] - 2) * #/(DivisorSigma[1, #] - # -1)] == # &] (* Amiram Eldar, Mar 02 2020 *)
PROG
(PARI)
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
nontrivialdivisors(n) = d=divisors(n); vector(#d-2, k, d[k+1])
s=[]; for(n=2, 500, t=nontrivialdivisors(n); if(#t>0 && numerator(harmonicmean(t))==n, s=concat(s, n))); s
CROSSREFS
Sequence in context: A179107 A160524 A161541 * A133157 A014544 A237610
KEYWORD
nonn
AUTHOR
Colin Barker, Nov 17 2014
STATUS
approved