

A179107


Records of minima of positive distance d between a square cubefree integer y and a cube of positive and squarefree integer x and such d = y^2  x^3.


32



1, 8, 15, 17, 24, 225, 1090, 8569, 11492, 14668, 14857, 28024, 117073
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If x=n^2 and y=n^3 distance d=0.
For x values see A179108.
For y values see A179109.
For numbers x from 46 to 108 distance can't be less than 8.
For numbers x from 109 to 5233 distance can't be less than 15.
For numbers x from 5234 to 8157 distance can't be less than 17.
For numbers x from 8158 to 729113 distance can't be less than 24.
For numbers x from 729114 to 28187350 distance can't be less than 225.
Next conjectured terms are: 4401169, 87002345, 193234265, 497218657.


LINKS

Table of n, a(n) for n=1..13.
J. Calvo, J. Herranz, G. Saez, A new algorithm to search for small nonzero x^3  y^2 values, Math. Comp. 78 (2009), 24352444.
N. Elkies, Hall conjecture


MATHEMATICA

d = 3; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)] + 1; k = m^2  n^d; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 720114}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd (* Artur Jasinski, Oct 30 2011 *)


CROSSREFS

Cf. A179108, A179109, A179386, A179387, A179388.
Sequence in context: A114605 A300860 A031103 * A160524 A161541 A247081
Adjacent sequences: A179104 A179105 A179106 * A179108 A179109 A179110


KEYWORD

more,nonn


AUTHOR

Artur Jasinski, Jun 29 2010


STATUS

approved



