login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327713
Exceptional class of numbers k such that p(25*k + 24) == 0 (mod 125), where p() = A000041().
3
6, 26, 60, 65, 70, 81, 96, 126, 135, 141, 175, 176, 196, 205, 206, 226, 305, 310, 330, 340, 346, 371, 380, 435, 436, 440, 460, 480, 481, 516, 595, 611, 646, 650, 665, 666, 685, 696, 700, 710, 716, 725, 730, 736, 745, 751, 760, 765, 775, 780, 811, 826, 841, 860, 871
OFFSET
1,1
COMMENTS
The unexceptional class consists of the numbers k == (2, 3, or 4) (mod 5). Watson (1938, p. 111) proved that such numbers k satisfy p(25*k + 24) == 0 (mod 125).
(p(25*a(m) + 24)/125: m >= 1) = (3177000598, 140513239982045202108972, 23104937422373952975695974907848646058, ...).
LINKS
Watson, G. N., Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see pp. 111-113.
EXAMPLE
p(25*6 + 24) = p(174) = 397125074750 = 3177000598 * 125 (the only example in Watson (1938)).
PROG
(PARI) is(n) = n % 5 < 2 && numbpart(25*n+24)%125==0 \\ David A. Corneth, Sep 23 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Sep 23 2019
EXTENSIONS
More terms from David A. Corneth, Sep 23 2019
STATUS
approved