login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A327713
Exceptional class of numbers k such that p(25*k + 24) == 0 (mod 125), where p() = A000041().
3
6, 26, 60, 65, 70, 81, 96, 126, 135, 141, 175, 176, 196, 205, 206, 226, 305, 310, 330, 340, 346, 371, 380, 435, 436, 440, 460, 480, 481, 516, 595, 611, 646, 650, 665, 666, 685, 696, 700, 710, 716, 725, 730, 736, 745, 751, 760, 765, 775, 780, 811, 826, 841, 860, 871
OFFSET
1,1
COMMENTS
The unexceptional class consists of the numbers k == (2, 3, or 4) (mod 5). Watson (1938, p. 111) proved that such numbers k satisfy p(25*k + 24) == 0 (mod 125).
(p(25*a(m) + 24)/125: m >= 1) = (3177000598, 140513239982045202108972, 23104937422373952975695974907848646058, ...).
LINKS
Watson, G. N., Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see pp. 111-113.
EXAMPLE
p(25*6 + 24) = p(174) = 397125074750 = 3177000598 * 125 (the only example in Watson (1938)).
PROG
(PARI) is(n) = n % 5 < 2 && numbpart(25*n+24)%125==0 \\ David A. Corneth, Sep 23 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Sep 23 2019
EXTENSIONS
More terms from David A. Corneth, Sep 23 2019
STATUS
approved