OFFSET
1,1
COMMENTS
The unexceptional class consists of the numbers k == (2, 3, or 4) (mod 5). Watson (1938, p. 111) proved that such numbers k satisfy p(25*k + 24) == 0 (mod 125).
(p(25*a(m) + 24)/125: m >= 1) = (3177000598, 140513239982045202108972, 23104937422373952975695974907848646058, ...).
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
Watson, G. N., Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see pp. 111-113.
EXAMPLE
p(25*6 + 24) = p(174) = 397125074750 = 3177000598 * 125 (the only example in Watson (1938)).
PROG
(PARI) is(n) = n % 5 < 2 && numbpart(25*n+24)%125==0 \\ David A. Corneth, Sep 23 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Sep 23 2019
EXTENSIONS
More terms from David A. Corneth, Sep 23 2019
STATUS
approved