login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327711
Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n (k is a partition length).
6
1, 1, 2, 3, 6, 10, 27, 55, 171, 475, 1555, 4915, 20023, 68243, 288024, 1213828, 5435935, 23966970, 121432923, 578757824, 3130381590, 16427772974, 91877826663, 519546134163, 3199523135912, 18868494152257, 120274458082095, 772954621249540, 5219747666882153
OFFSET
0,3
COMMENTS
Number of partitions of [n] whose block sizes are nondecreasing when blocks are ordered by their minima and these minima are {1..k} (for some k <= n). a(5) = 10: 12345, 13|245, 14|235, 15|234, 1|2345, 1|24|35, 1|25|34, 1|2|345, 1|2|3|45, 1|2|3|4|5.
MAPLE
with(combinat):
a:= n-> add(multinomial(n-nops(p), map(
x-> x-1, p)[], 0), p=partition(n)):
seq(a(n), n=0..28);
# second Maple program:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<2, 0,
b(n, i-1, p)) +b(n-i, min(n-i, i), p-1)/(i-1)!)
end:
a:= n-> b(n$3):
seq(a(n), n=0..28);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 2, 0, b[n, i - 1, p]] + b[n - i, Min[n - i, i], p - 1]/(i - 1)!];
a[n_] := b[n, n, n];
a /@ Range[0, 28] (* Jean-François Alcover, May 01 2020, from 2nd Maple program *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 22 2019
STATUS
approved