Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 10 2023 09:52:08
%S 1,1,2,3,6,10,27,55,171,475,1555,4915,20023,68243,288024,1213828,
%T 5435935,23966970,121432923,578757824,3130381590,16427772974,
%U 91877826663,519546134163,3199523135912,18868494152257,120274458082095,772954621249540,5219747666882153
%N Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n (k is a partition length).
%C Number of partitions of [n] whose block sizes are nondecreasing when blocks are ordered by their minima and these minima are {1..k} (for some k <= n). a(5) = 10: 12345, 13|245, 14|235, 15|234, 1|2345, 1|24|35, 1|25|34, 1|2|345, 1|2|3|45, 1|2|3|4|5.
%H Alois P. Heinz, <a href="/A327711/b327711.txt">Table of n, a(n) for n = 0..635</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%p with(combinat):
%p a:= n-> add(multinomial(n-nops(p), map(
%p x-> x-1, p)[], 0), p=partition(n)):
%p seq(a(n), n=0..28);
%p # second Maple program:
%p b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<2, 0,
%p b(n, i-1, p)) +b(n-i, min(n-i, i), p-1)/(i-1)!)
%p end:
%p a:= n-> b(n$3):
%p seq(a(n), n=0..28);
%t b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 2, 0, b[n, i - 1, p]] + b[n - i, Min[n - i, i], p - 1]/(i - 1)!];
%t a[n_] := b[n, n, n];
%t a /@ Range[0, 28] (* _Jean-François Alcover_, May 01 2020, from 2nd Maple program *)
%Y Cf. A005651, A179973, A326493, A327712, A327729.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 22 2019