The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327729 a(n) = Sum_{p} M(n-k; p_1-1, ..., p_k-1) * Product_{j=1..k} a(p_j), where p = (p_1, ..., p_k) ranges over all partitions of n into smaller parts (k is a partition length and M is a multinomial). 3
 1, 1, 2, 6, 18, 90, 414, 2892, 18342, 155124, 1265130, 13413240, 129656286, 1564538796, 18285385518, 255345207156, 3378398348214, 52931303772912, 797460543143154, 13926097774972152, 234050020177159926, 4466082284967035124, 83159771376289666806 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The formula is a generalization of the formula given in A327643. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..460 Wikipedia, Multinomial coefficients Wikipedia, Partition (number theory) MAPLE with(combinat): a:= proc(n) option remember; `if`(n<2, 1, add(mul(a(i), i=p)       *multinomial(n-nops(p), map(x-> x-1, p)[]),        p=select(x-> nops(x)>1, partition(n))))     end: seq(a(n), n=1..24); # second Maple program: b:= proc(n, p, i) option remember; `if`(n=0, p!, `if`(i<1, 0,       b(n, p, i-1) +a(i)*b(n-i, p-1, min(n-i, i))/(i-1)!))     end: a:= n-> `if`(n<2, 1, b(n\$2, n-1)): seq(a(n), n=1..24); MATHEMATICA b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i < 1, 0, b[n, p, i - 1] + a[i] b[n - i, p - 1, Min[n - i, i]]/(i - 1)!]]; a[n_] := If[n < 2, 1, b[n, n, n - 1]]; Array[a, 24] (* Jean-François Alcover, May 03 2020, after 2nd Maple program *) CROSSREFS Cf. A327643, A327711. Sequence in context: A007869 A263915 A144557 * A273001 A118455 A165774 Adjacent sequences:  A327726 A327727 A327728 * A327730 A327731 A327732 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 13:52 EDT 2022. Contains 355989 sequences. (Running on oeis4.)