OFFSET
1,4
COMMENTS
Number of proper (n-1)-times partitions of n, cf. A327639.
Might be called "Half-Factorial numbers" analog to the "Half-Catalan numbers" (A000992).
The recursion formula is a special case of the formula given in A327729.
a(n+1)/(n*a(n)) tends to 0.67617164... - Vaclav Kotesovec, Apr 28 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..481
Vaclav Kotesovec, Plot of a(n+1)/(n*a(n)) for n = 1..10000
Wikipedia, Partition (number theory)
FORMULA
EXAMPLE
a(1) = 1:
1
a(2) = 1:
2 -> 11
a(3) = 1:
3 -> 21 -> 111
a(4) = 3:
4 -> 31 -> 211 -> 1111
4 -> 22 -> 112 -> 1111
4 -> 22 -> 211 -> 1111
a(5) = 6:
5 -> 41 -> 311 -> 2111 -> 11111
5 -> 41 -> 221 -> 1121 -> 11111
5 -> 41 -> 221 -> 2111 -> 11111
5 -> 32 -> 212 -> 1112 -> 11111
5 -> 32 -> 212 -> 2111 -> 11111
5 -> 32 -> 311 -> 2111 -> 11111
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
a:= n-> add(b(n$2, i)*(-1)^(n-1-i)*binomial(n-1, i), i=0..n-1):
seq(a(n), n=1..29);
# second Maple program:
a:= proc(n) option remember; `if`(n=1, 1,
add(a(j)*a(n-j)*binomial(n-2, j-1), j=1..n/2))
end:
seq(a(n), n=1..29);
MATHEMATICA
a[n_] := a[n] = Sum[Binomial[n-2, j-1] a[j] a[n-j], {j, n/2}]; a[1] = 1;
Array[a, 25] (* Jean-François Alcover, Apr 28 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 20 2019
STATUS
approved