login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327644
Number of proper many times partitions of n.
3
1, 1, 2, 4, 14, 44, 244, 1196, 9366, 62296, 584016, 5120548, 60244028, 627389924, 8378159376, 106097674780, 1652301306958, 23655318730276, 409987534384504, 6742903763089068, 130675390985884516, 2396246933608687036, 50636625943991790784, 1032841246318579471748
OFFSET
0,3
COMMENTS
In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.
EXAMPLE
a(3) = 4: 3, 3->21, 3->111, 3->21->111.
a(4) = 14: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*
binomial(k, i), i=0..k), k=0..max(0, n-1)):
seq(a(n), n=0..23);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
a[n_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {k, 0, Max[0, n - 1]}, {i, 0, k}];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
CROSSREFS
Row sums of A327639.
Cf. A327648.
Sequence in context: A007866 A226909 A121751 * A151355 A014272 A070822
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 20 2019
STATUS
approved