login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327639 Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows. 8
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 15, 16, 6, 1, 10, 45, 88, 76, 24, 1, 14, 93, 282, 420, 302, 84, 1, 21, 223, 1052, 2489, 3112, 1970, 498, 1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220, 1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.

T(n,k) is defined for all n>=0 and k>=0.  The triangle displays only positive terms.  All other terms are zero.

Row n is the inverse binomial transform of the n-th row of array A323718.

LINKS

Alois P. Heinz, Rows n = 0..170, flattened

Wikipedia, Iverson bracket

Wikipedia, Partition (number theory)

FORMULA

T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A323718(n,i).

T(n,n-1) = A327631(n,n-1)/n = A327643(n) for n >= 1.

Sum_{k=1..n-1} k * T(n,k) = A327646(n).

Sum_{k=0..max(0,n-1)} (-1)^k * T(n,k) = [n<2], where [] is an Iverson bracket.

EXAMPLE

T(4,0) = 1:  4

T(4,1) = 4:     T(4,2) = 6:          T(4,3) = 3:

  4-> 31          4-> 31 -> 211        4-> 31 -> 211 -> 1111

  4-> 22          4-> 31 -> 1111       4-> 22 -> 112 -> 1111

  4-> 211         4-> 22 -> 112        4-> 22 -> 211 -> 1111

  4-> 1111        4-> 22 -> 211

                  4-> 22 -> 1111

                  4-> 211-> 1111

Triangle T(n,k) begins:

  1;

  1;

  1,  1;

  1,  2,   1;

  1,  4,   6,    3;

  1,  6,  15,   16,     6;

  1, 10,  45,   88,    76,     24;

  1, 14,  93,  282,   420,    302,     84;

  1, 21, 223, 1052,  2489,   3112,   1970,    498;

  1, 29, 444, 2950,  9865,  18123,  18618,  10046,  2220;

  1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108;

  ...

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,

      b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))

    end:

T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k):

seq(seq(T(n, k), k=0..max(0, n-1)), n=0..12);

CROSSREFS

Columns k=0-2 give A000012, A000065, A327769.

Row sums give A327644.

T(2n,n) gives A327645.

Cf. A323718, A327631, A327643, A327646.

Sequence in context: A156579 A322266 A190284 * A273891 A034870 A324224

Adjacent sequences:  A327636 A327637 A327638 * A327640 A327641 A327642

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, Sep 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 12:42 EST 2020. Contains 332136 sequences. (Running on oeis4.)