|
|
A327636
|
|
Numbers n such that 2n + 1 divides 2^n + n^2.
|
|
1
|
|
|
0, 1, 313, 30853, 42992, 247753, 584989, 4130748, 4390945, 4780473, 5871073, 7615813, 8123113, 13514233, 13971013, 19128653, 19392433, 43794833, 51644173, 67314973, 69522073, 108168073, 124498753, 124510153, 177694105, 198750308, 208302253, 212791885, 230815033
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
2*a(n) + 1: 1, 3, 627, 61707, 85985, 495507, 1169979, 8261497, ...
|
|
LINKS
|
Table of n, a(n) for n=0..28.
|
|
MATHEMATICA
|
Do[ k=2*n+1; f=PowerMod[ 2, n, k ] + PowerMod[ n, 2, k ]; If[ IntegerQ[ f/k ], Print[ n ] ], {n, 0, 10^7} ] (* Metin Sariyar, Sep 21 2019 *)
|
|
PROG
|
(MAGMA) [n: n in [0..100000] | Denominator((2^n+n^2)/(2*n+1)) eq 1];
(PARI) is(n) = Mod(2, 2*n+1)^n==-n^2 \\ Felix Fröhlich, Sep 20 2019
|
|
CROSSREFS
|
Cf. A001580, A242776.
Sequence in context: A200912 A123059 A210071 * A332131 A287294 A255388
Adjacent sequences: A327633 A327634 A327635 * A327637 A327638 A327639
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Sep 20 2019
|
|
EXTENSIONS
|
More terms from Felix Fröhlich, Sep 20 2019
|
|
STATUS
|
approved
|
|
|
|