login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324224 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows. 4
1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 18, 24, 18, 6, 1, 1, 8, 36, 96, 120, 96, 36, 8, 1, 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1, 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 35280, 15120, 4200, 840, 126, 14, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Rows n = 1..100, flattened

Wikipedia, Permutation

Wikipedia, Permutation matrix

FORMULA

T(n,k) = T(n,-k).

T(n,k) = (n-t)*(n-1)!/t! if t < n with t = |k|, T(n,k) = 0 otherwise.

T(n,k) = 1/|k|! * A324225(n,k).

E.g.f. of column k: x^t/t! * hypergeom([2, t], [t+1], x) with t = |k|+1.

Sum_{k=1-n..n-1} T(n,k) = A306495(n-1).

EXAMPLE

Triangle T(n,k) begins:

  :                                 1                              ;

  :                           1,    2,    1                        ;

  :                     1,    4,    6,    4,    1                  ;

  :               1,    6,   18,   24,   18,    6,   1             ;

  :          1,   8,   36,   96,  120,   96,   36,   8,  1         ;

  :      1, 10,  60,  240,  600,  720,  600,  240,  60, 10,  1     ;

  :  1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1  ;

MAPLE

b:= proc(s, c) option remember; (n-> `if`(n=0, c,

      add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))

    end:

T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, 0)):

seq(T(n), n=1..8);

# second Maple program:

egf:= k-> (t-> x^t/t!*hypergeom([2, t], [t+1], x))(abs(k)+1):

T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):

seq(seq(T(n, k), k=1-n..n-1), n=1..8);

# third Maple program:

T:= (n, k)-> (t-> `if`(t<n, (n-t)*(n-1)!/t!, 0))(abs(k)):

seq(seq(T(n, k), k=1-n..n-1), n=1..8);

CROSSREFS

Columns k=0-6 give (offsets may differ): A000142, A001563, A001286, A005990, A061206, A062199, A062148.

Row sums give A306495(n-1).

Cf. A306234, A324225.

Sequence in context: A327639 A273891 A034870 * A264622 A275017 A141036

Adjacent sequences:  A324221 A324222 A324223 * A324225 A324226 A324227

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, Feb 18 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 22:45 EDT 2020. Contains 334756 sequences. (Running on oeis4.)