login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062148
Second (unsigned) column sequence of triangle A062138 (generalized a=5 Laguerre).
7
1, 14, 168, 2016, 25200, 332640, 4656960, 69189120, 1089728640, 18162144000, 319653734400, 5928123801600, 115598414131200, 2365321396838400, 50685458503680000, 1135354270482432000, 26538906072526848000, 646300418472124416000, 16372943934627151872000
OFFSET
0,2
FORMULA
E.g.f.: (1+6*x)/(1-x)^8.
a(n) = A062138(n+1, 1) = (n+1)!*binomial(n+6, 6).
If we define f(n,i,x)= Sum_{k=i..n}(Sum_{j=i..k}(binomial(k,j) *Stirling1(n,k)* Stirling2(j,i)*x^(k-j))) then a(n-1) = (-1)^(n-1) * f(n,1,-7), (n>=1). - Milan Janjic, Mar 01 2009
Assuming offset 1: a(n) = n!*binomial(-n,6). - Peter Luschny, Apr 29 2016
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 5477/10 - 204*e - 6*gamma + 6*Ei(1), where gamma is Euler's constant (A001620) and Ei(1) is the exponential integral at 1 (A091725).
Sum_{n>=0} (-1)^n/a(n) = 403/10 - 120/e + 6*gamma - 6*Ei(-1), where -Ei(-1) is the negated exponential integral at -1 (A099285). (End)
EXAMPLE
a(3) = (3+1)! * binomial(3+6,6) = 24 * 84 = 2016. - Indranil Ghosh, Feb 24 2017
MATHEMATICA
Table[Sum[n!/6!, {i, 6, n}], {n, 6, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
PROG
(PARI) a(n)=(n+1)!*binomial(n+6, 6) \\ Indranil Ghosh, Feb 24 2017
(Python)
import math
f=math.factorial
def C(n, r):return f(n)/f(r)/f(n-r)
def A062148(n): return f(n+1)*C(n+6, 6) # Indranil Ghosh, Feb 24 2017
(Magma) [Factorial(n+1)*Binomial(n+6, 6): n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Cf. A001725 (first column of A062138).
Appears in the third left hand column of A167556 multiplied by 120. - Johannes W. Meijer, Nov 12 2009
Sequence in context: A273587 A125449 A159738 * A200164 A199529 A098299
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved