OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1+6*x)/(1-x)^8.
a(n) = A062138(n+1, 1) = (n+1)!*binomial(n+6, 6).
If we define f(n,i,x)= Sum_{k=i..n}(Sum_{j=i..k}(binomial(k,j) *Stirling1(n,k)* Stirling2(j,i)*x^(k-j))) then a(n-1) = (-1)^(n-1) * f(n,1,-7), (n>=1). - Milan Janjic, Mar 01 2009
Assuming offset 1: a(n) = n!*binomial(-n,6). - Peter Luschny, Apr 29 2016
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 5477/10 - 204*e - 6*gamma + 6*Ei(1), where gamma is Euler's constant (A001620) and Ei(1) is the exponential integral at 1 (A091725).
Sum_{n>=0} (-1)^n/a(n) = 403/10 - 120/e + 6*gamma - 6*Ei(-1), where -Ei(-1) is the negated exponential integral at -1 (A099285). (End)
EXAMPLE
a(3) = (3+1)! * binomial(3+6,6) = 24 * 84 = 2016. - Indranil Ghosh, Feb 24 2017
MATHEMATICA
Table[Sum[n!/6!, {i, 6, n}], {n, 6, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
PROG
(PARI) a(n)=(n+1)!*binomial(n+6, 6) \\ Indranil Ghosh, Feb 24 2017
(Python)
import math
f=math.factorial
def C(n, r):return f(n)/f(r)/f(n-r)
def A062148(n): return f(n+1)*C(n+6, 6) # Indranil Ghosh, Feb 24 2017
(Magma) [Factorial(n+1)*Binomial(n+6, 6): n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Appears in the third left hand column of A167556 multiplied by 120. - Johannes W. Meijer, Nov 12 2009
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved