login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062150
Fourth (unsigned) column sequence of triangle A062138 (generalized a=5 Laguerre).
3
1, 36, 900, 19800, 415800, 8648640, 181621440, 3891888000, 85621536000, 1940754816000, 45413662694400, 1098184934246400, 27454623356160000, 709596419051520000, 18956361480376320000, 523195576858386432000
OFFSET
0,2
FORMULA
E.g.f.: (1+24*x+84*x^2+56*x^3)/(1-x)^12.
a(n) = A062138(n+3, 3).
a(n) = (n+3)!*binomial(n+8, 8)/3!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-3)=(-1)^(n-1)*f(n,3,-9), (n>=3). - Milan Janjic, Mar 01 2009
EXAMPLE
a(2) = (2+3)! * binomial(2+8,8) / 3! = (120 * 45) / 6 = 900. - Indranil Ghosh, Feb 24 2017
MATHEMATICA
Table[(n+3)!*Binomial[n+8, 8]/3!, {n, 0, 15}] (* Indranil Ghosh, Feb 24 2017 *)
PROG
(PARI) a(n)=(n+3)!*binomial(n+8, 8)/3! \\ Indranil Ghosh, Feb 24 2017
(Python)
import math
f=math.factorial
def C(n, r):return f(n)/f(r)/f(n-r)
def A062150(n): return f(n+3)*C(n+8, 8)/f(3) # Indranil Ghosh, Feb 24 2017
(Magma) [Factorial(n+3)*Binomial(n+8, 8)/6: n in [0..20]]; // G. C. Greubel, May 12 2018
CROSSREFS
Cf. A062149.
Sequence in context: A248108 A233003 A075916 * A011811 A167250 A218177
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved