The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062150 Fourth (unsigned) column sequence of triangle A062138 (generalized a=5 Laguerre). 2
 1, 36, 900, 19800, 415800, 8648640, 181621440, 3891888000, 85621536000, 1940754816000, 45413662694400, 1098184934246400, 27454623356160000, 709596419051520000, 18956361480376320000, 523195576858386432000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..400 FORMULA E.g.f.: (1+24*x+84*x^2+56*x^3)/(1-x)^12. a(n) = A062138(n+3, 3). a(n) = (n+3)!*binomial(n+8, 8)/3!. If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-3)=(-1)^(n-1)*f(n,3,-9), (n>=3). - Milan Janjic, Mar 01 2009 EXAMPLE a(2) = (2+3)! * binomial(2+8,8) / 3! = (120 * 45) / 6 = 900. - Indranil Ghosh, Feb 24 2017 MATHEMATICA Table[(n+3)!*Binomial[n+8, 8]/3!, {n, 0, 15}] (* Indranil Ghosh, Feb 24 2017 *) PROG (PARI) a(n)=(n+3)!*binomial(n+8, 8)/3! \\ Indranil Ghosh, Feb 24 2017 (Python) import math f=math.factorial def C(n, r):return f(n)/f(r)/f(n-r) def A062150(n): return f(n+3)*C(n+8, 8)/f(3) # Indranil Ghosh, Feb 24 2017 (MAGMA) [Factorial(n+3)*Binomial(n+8, 8)/6: n in [0..20]]; // G. C. Greubel, May 12 2018 CROSSREFS Cf. A062149. Sequence in context: A248108 A233003 A075916 * A011811 A167250 A218177 Adjacent sequences:  A062147 A062148 A062149 * A062151 A062152 A062153 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 23:17 EDT 2020. Contains 333260 sequences. (Running on oeis4.)