login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062138
Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x).
13
1, 6, -1, 42, -14, 1, 336, -168, 24, -1, 3024, -2016, 432, -36, 1, 30240, -25200, 7200, -900, 50, -1, 332640, -332640, 118800, -19800, 1650, -66, 1, 3991680, -4656960, 1995840, -415800, 46200, -2772, 84, -1, 51891840, -69189120
OFFSET
0,2
COMMENTS
The row polynomials s(n,x) := n!*L(n,5,x)= sum(a(n,m)*x^m,m=0..n) have e.g.f. exp(-z*x/(1-z))/(1-z)^6. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials sum(|A008297(n,m)|*(-x)^m, m=1..n), n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
These polynomials appear in the radial part of the l=2 (d-wave) eigen functions for the discrete energy levels of the H-atom. See Messiah reference.
For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148-A062152. Row sums (signed) give A062191; row sums (unsigned) give A062192.
The unsigned version of this triangle is the triangle of unsigned 3-Lah numbers A143498. - Peter Bala, Aug 25 2008
REFERENCES
A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
FORMULA
T(n, m) = ((-1)^m)*n!*binomial(n+5, n-m)/m!.
E.g.f. for m-th column: ((-x/(1-x))^m)/(m!*(1-x)^6), m >= 0.
EXAMPLE
Triangle begins:
{1};
{6, -1};
{42, -14, 1};
{336, -168, 24, -1};
...
2!*L(2, 5, x) = 42-14*x+x^2.
MATHEMATICA
Flatten[Table[((-1)^m)*n!*Binomial[n+5, n-m]/m!, {n, 0, 8}, {m, 0, n}]] (* Indranil Ghosh, Feb 24 2017 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (m=0, n, print1(((-1)^m)*n!*binomial(n+5, n-m)/m!, ", "); ); print(); ); } \\ Indranil Ghosh, Feb 24 2017
(PARI) row(n) = Vecrev(n!*pollaguerre(n, 5)); \\ Michel Marcus, Feb 06 2021
(Python)
import math
f=math.factorial
def C(n, r):return f(n)//f(r)//f(n-r)
i=-1
for n in range(26):
for m in range(n+1):
i += 1
print(str(i)+" "+str(((-1)**m)*f(n)*C(n+5, n-m)//f(m))) # Indranil Ghosh, Feb 24 2017
CROSSREFS
For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148, A062149, A062150, A062151, A062152.
Row sums (signed) give A062191, row sums (unsigned) give A062192.
Cf. A143498.
Sequence in context: A035529 A135893 A051338 * A143498 A144356 A049374
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved