The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062138 Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x). 13
 1, 6, -1, 42, -14, 1, 336, -168, 24, -1, 3024, -2016, 432, -36, 1, 30240, -25200, 7200, -900, 50, -1, 332640, -332640, 118800, -19800, 1650, -66, 1, 3991680, -4656960, 1995840, -415800, 46200, -2772, 84, -1, 51891840, -69189120 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The row polynomials s(n,x) := n!*L(n,5,x)= sum(a(n,m)*x^m,m=0..n) have e.g.f. exp(-z*x/(1-z))/(1-z)^6. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials sum(|A008297(n,m)|*(-x)^m, m=1..n), n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference). These polynomials appear in the radial part of the l=2 (d-wave) eigen functions for the discrete energy levels of the H-atom. See Messiah reference. For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148-A062152. Row sums (signed) give A062191; row sums (unsigned) give A062192. The unsigned version of this triangle is the triangle of unsigned 3-Lah numbers A143498. - Peter Bala, Aug 25 2008 REFERENCES A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969. LINKS Indranil Ghosh, Rows 0..125, flattened Index entries for sequences related to Laguerre polynomials FORMULA T(n, m) = ((-1)^m)*n!*binomial(n+5, n-m)/m!. E.g.f. for m-th column: ((-x/(1-x))^m)/(m!*(1-x)^6), m >= 0. EXAMPLE Triangle begins: {1}; {6, -1}; {42, -14, 1}; {336, -168, 24, -1}; ... 2!*L(2, 5, x) = 42-14*x+x^2. MATHEMATICA Flatten[Table[((-1)^m)*n!*Binomial[n+5, n-m]/m!, {n, 0, 8}, {m, 0, n}]] (* Indranil Ghosh, Feb 24 2017 *) PROG (PARI) tabl(nn) = {for (n=0, nn, for (m=0, n, print1(((-1)^m)*n!*binomial(n+5, n-m)/m!, ", "); ); print(); ); } \\ Indranil Ghosh, Feb 24 2017 (PARI) row(n) = Vecrev(n!*pollaguerre(n, 5)); \\ Michel Marcus, Feb 06 2021 (Python) import math f=math.factorial def C(n, r):return f(n)//f(r)//f(n-r) i=-1 for n in range(26): for m in range(n+1): i += 1 print(str(i)+" "+str(((-1)**m)*f(n)*C(n+5, n-m)//f(m))) # Indranil Ghosh, Feb 24 2017 CROSSREFS Cf. A021009, A062137, A062139, A062140, A066667. For m=0..5 the (unsigned) column sequences (without leading zeros) are: A001725(n+5), A062148, A062149, A062150, A062151, A062152. Row sums (signed) give A062191, row sums (unsigned) give A062192. Cf. A143498. Sequence in context: A035529 A135893 A051338 * A143498 A144356 A049374 Adjacent sequences: A062135 A062136 A062137 * A062139 A062140 A062141 KEYWORD sign,easy,tabl AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 01:41 EDT 2024. Contains 374585 sequences. (Running on oeis4.)