The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062137 Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x). 17
 1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The row polynomials s(n,x) := n!*L(n,3,x) = Sum_{m=0..n} a(n,m)*x^m have e.g.f. exp(-z*x/(1-z))/(1-z)^4. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} |A008297(n,m)|*(-x)^m, n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference). These polynomials appear in the radial part of the l=1 (p-wave) eigen functions for the discrete energy levels of the H-atom. See Messiah reference. The unsigned version of this triangle is the triangle of unsigned 2-Lah numbers A143497. - Peter Bala, Aug 25 2008 This matrix (unsigned) is embedded in that for n!*L(n,-3,-x). Introduce 0,0,0 to each unsigned row and then add 1,-2,1,4,2,1 to the beginning of the array as the first three rows to generate n!*L(n,-3,-x). - Tom Copeland, Apr 21 2014 From Wolfdieter Lang, Jul 07 2014: (Start) The standard Rodrigues formula for the monic generalized Laguerre polynomials (also called Laguerre-Sonin polynomials) is Lm(n,alpha,x) := (-1)^n*n!*L(n,3,x) is x^(-alpha)*exp(x)*(d/dx)^n(exp(-x)*x^(n+alpha)). Another Rodrigues type formula is Lm(n,alpha,x) = exp(x)*x^(-alpha+n+1)*(-x^2*d/dx)^n*(exp(-x)*x^(alpha+1)). This is derivable from the differential - difference relation of Lm(n,alpha,x) which yields first the creation operator formula -(x*d/dx + (-x + alpha + n + 1))*Lm(n,alpha,x) = Lm(n+1,alpha,x) or in the variable q = log(x) the operator -(d/dq + alpha + n + 1 - exp(q)). The identity (due to Christoph Mayer) (d/dq - (d/dq)W(q))*f(q) = exp(W(q)*d/dq(exp(-W(q)*f(q)) is then iterated with W(q) = W(alpha,n,q) = exp(q) - (alpha + n + 1)*q and a further change of variables leads then to the given result. (End) REFERENCES A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969. LINKS Indranil Ghosh, Rows 0..125, flattened Wolfdieter Lang, First eleven rows of the triangle. Index entries for sequences related to Laguerre polynomials FORMULA a(n, m) = ((-1)^m)*n!*binomial(n+3, n-m)/m!. E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^4), m >= 0. EXAMPLE The triangle a(n,m) begins: n\m 0 1 2 3 4 5 ... 0: 1 1: 4 -1 2: 20 -10 1 3: 120 -90 18 -1 4: 840 -840 252 -28 1 5: 6720 -8400 3360 -560 40 -1 ... Formatted by Wolfdieter Lang, Jul 07 2014 For more rows see the link. n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2. MATHEMATICA Flatten[Table[((-1)^m)*n!*Binomial[n+3, n-m]/m!, {n, 0, 9}, {m, 0, n}]] (* Indranil Ghosh, Feb 23 2017 *) PROG (PARI) row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021 CROSSREFS For m=0..5 the (unsigned) columns give A001715, A061206, A062141-A062144. The row sums (signed) give A062146, the row sums (unsigned) give A062147. Cf. A143497. - Peter Bala, Aug 25 2008 Cf. A062139, A105278. - Wolfdieter Lang, Jul 07 2014 Sequence in context: A135891 A049459 A143493 * A143497 A144354 A049352 Adjacent sequences: A062134 A062135 A062136 * A062138 A062139 A062140 KEYWORD sign,easy,tabl AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 03:33 EDT 2024. Contains 375857 sequences. (Running on oeis4.)