login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062147 Row sums of unsigned triangle A062137 (generalized a=3 Laguerre). 6
1, 5, 31, 229, 1961, 19081, 207775, 2501801, 32989969, 472630861, 7307593151, 121247816845, 2148321709561, 40476722545169, 807927483311551, 17028146983530961, 377844723929464865, 8803698102396787861, 214877019857456672479, 5482159931449737760181 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for sequences related to Laguerre polynomials

FORMULA

E.g.f.: exp(x/(1-x))/(1-x)^4.

a(n) = Sum_{m=0..n} n!*binomial(n+3, n-m)/m!.

a(n) = (2*n+3)*a(n-1) - (n-1)*(n+2)*a(n-2). - Vaclav Kotesovec, Oct 11 2012

a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+7/4)/sqrt(2). - Vaclav Kotesovec, Oct 11 2012

MATHEMATICA

Table[Sum[n!*Binomial[n+3, n-k]/k!, {k, 0, n}], {n, 0, 20}]

(* or *)

Table[n!*SeriesCoefficient[E^(x/(1-x))/(1-x)^4, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 11 2012 *)

PROG

(PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(x/(1-x))/(1-x)^4)) \\ Joerg Arndt, May 06 2013

(PARI) a(n) = vecsum(apply(abs, Vec(n!*pollaguerre(n, 3)))); \\ Michel Marcus, Feb 06 2021

(MAGMA) [Factorial(n)*(&+[Binomial(n+3, n-m)/Factorial(m): m in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018

CROSSREFS

Cf. A062137.

Sequence in context: A192950 A001910 A052773 * A213048 A069321 A211179

Adjacent sequences:  A062144 A062145 A062146 * A062148 A062149 A062150

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jun 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 04:23 EST 2021. Contains 341868 sequences. (Running on oeis4.)