login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of unsigned triangle A062137 (generalized a=3 Laguerre).
7

%I #38 Jul 31 2024 09:47:24

%S 1,5,31,229,1961,19081,207775,2501801,32989969,472630861,7307593151,

%T 121247816845,2148321709561,40476722545169,807927483311551,

%U 17028146983530961,377844723929464865,8803698102396787861,214877019857456672479,5482159931449737760181

%N Row sums of unsigned triangle A062137 (generalized a=3 Laguerre).

%H Vincenzo Librandi, <a href="/A062147/b062147.txt">Table of n, a(n) for n = 0..200</a>

%H Luis Verde-Star, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Verde/verde4.html">A Matrix Approach to Generalized Delannoy and Schröder Arrays</a>, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: exp(x/(1-x))/(1-x)^4.

%F a(n) = Sum_{m=0..n} n!*binomial(n+3, n-m)/m!.

%F a(n) = (2*n+3)*a(n-1) - (n-1)*(n+2)*a(n-2). - _Vaclav Kotesovec_, Oct 11 2012

%F a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+7/4)/sqrt(2). - _Vaclav Kotesovec_, Oct 11 2012

%F a(n) = n!*LaguerreL(n, 3, -1). - _G. C. Greubel_, Mar 10 2021

%p A062147 := n -> n!*simplify(LaguerreL(n,3,-1), 'LaguerreL');

%p seq(A062147(n), n = 0 .. 30); # _G. C. Greubel_, Mar 10 2021

%t Table[Sum[n!*Binomial[n+3,n-k]/k!,{k,0,n}],{n,0,20}]

%t (* or *)

%t Table[n!*SeriesCoefficient[E^(x/(1-x))/(1-x)^4,{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 11 2012 *)

%o (PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(x/(1-x))/(1-x)^4)) \\ _Joerg Arndt_, May 06 2013

%o (PARI) a(n) = vecsum(apply(abs,Vec(n!*pollaguerre(n, 3)))); \\ _Michel Marcus_, Feb 06 2021

%o (Magma) [Factorial(n)*(&+[Binomial(n+3,n-m)/Factorial(m): m in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Feb 06 2018

%o (Sage) [factorial(n)*gen_laguerre(n, 3, -1) for n in (0..30)] # _G. C. Greubel_, Mar 10 2021

%Y Cf. A062137, A216294.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Jun 19 2001