The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062144 Sixth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x). 3
 1, 54, 1890, 55440, 1496880, 38918880, 998917920, 25686460800, 667847980800, 17660868825600, 476843458291200, 13178219210956800, 373382877643776000, 10856825211488256000, 324153781314435072000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..400 FORMULA a(n) = (n+5)!*binomial(n+8, 8)/5!. E.g.f.: N(3;5, x)/(1-x)^14 with N(3;5, x) := Sum_{k=0..5} A062145(5, k) *x^k = 1 +40*x +280*x^2 +560*x^3 +350*x^4 +56*x^5. If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-5) = (-1)^(n-1)*f(n,5, -9), (n>=5). - Milan Janjic, Mar 01 2009 EXAMPLE a(2) = (2+5)! * binomial(2+8,8)/ 5! = (5040 * 45) / 120 = 1890. - Indranil Ghosh, Feb 24 2017 MATHEMATICA Table[(n+5)!*Binomial[n+8, 8]/5!, {n, 0, 14}] (* Indranil Ghosh, Feb 24 2017 *) PROG (PARI) a(n)=(n+5)!*binomial(n+8, 8)/5! \\ Indranil Ghosh, Feb 24 2017 (Python) import math f=math.factorial def C(n, r):return f(n)/f(r)/f(n-r) def A062144(n): return f(n+5)*C(n+8, 8)/f(5) # Indranil Ghosh, Feb 24 2017 (MAGMA) [Factorial(n+5)*Binomial(n+8, 8)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 11 2018 CROSSREFS Cf. A062143. Sequence in context: A172501 A173188 A004363 * A262112 A076009 A003755 Adjacent sequences:  A062141 A062142 A062143 * A062145 A062146 A062147 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 23:44 EST 2020. Contains 332270 sequences. (Running on oeis4.)