login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062144
Sixth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).
3
1, 54, 1890, 55440, 1496880, 38918880, 998917920, 25686460800, 667847980800, 17660868825600, 476843458291200, 13178219210956800, 373382877643776000, 10856825211488256000, 324153781314435072000
OFFSET
0,2
FORMULA
a(n) = (n+5)!*binomial(n+8, 8)/5!.
E.g.f.: N(3;5, x)/(1-x)^14 with N(3;5, x) := Sum_{k=0..5} A062145(5, k) *x^k = 1 +40*x +280*x^2 +560*x^3 +350*x^4 +56*x^5.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-5) = (-1)^(n-1)*f(n,5, -9), (n>=5). - Milan Janjic, Mar 01 2009
EXAMPLE
a(2) = (2+5)! * binomial(2+8,8)/ 5! = (5040 * 45) / 120 = 1890. - Indranil Ghosh, Feb 24 2017
MATHEMATICA
Table[(n+5)!*Binomial[n+8, 8]/5!, {n, 0, 14}] (* Indranil Ghosh, Feb 24 2017 *)
PROG
(PARI) a(n)=(n+5)!*binomial(n+8, 8)/5! \\ Indranil Ghosh, Feb 24 2017
(Python)
import math
f=math.factorial
def C(n, r):return f(n)/f(r)/f(n-r)
def A062144(n): return f(n+5)*C(n+8, 8)/f(5) # Indranil Ghosh, Feb 24 2017
(Magma) [Factorial(n+5)*Binomial(n+8, 8)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 11 2018
CROSSREFS
Cf. A062143.
Sequence in context: A172501 A173188 A004363 * A262112 A076009 A358925
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved