OFFSET
0,2
LINKS
FORMULA
a(n) = (n+5)!*binomial(n+8, 8)/5!.
E.g.f.: N(3;5, x)/(1-x)^14 with N(3;5, x) := Sum_{k=0..5} A062145(5, k) *x^k = 1 +40*x +280*x^2 +560*x^3 +350*x^4 +56*x^5.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-5) = (-1)^(n-1)*f(n,5, -9), (n>=5). - Milan Janjic, Mar 01 2009
EXAMPLE
a(2) = (2+5)! * binomial(2+8,8)/ 5! = (5040 * 45) / 120 = 1890. - Indranil Ghosh, Feb 24 2017
MATHEMATICA
Table[(n+5)!*Binomial[n+8, 8]/5!, {n, 0, 14}] (* Indranil Ghosh, Feb 24 2017 *)
PROG
(PARI) a(n)=(n+5)!*binomial(n+8, 8)/5! \\ Indranil Ghosh, Feb 24 2017
(Python)
import math
f=math.factorial
def C(n, r):return f(n)/f(r)/f(n-r)
def A062144(n): return f(n+5)*C(n+8, 8)/f(5) # Indranil Ghosh, Feb 24 2017
(Magma) [Factorial(n+5)*Binomial(n+8, 8)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 11 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved