OFFSET
0,2
LINKS
FORMULA
a(n) = (n+3)!*binomial(n+6, 6)/3!; e.g.f.: (1 + 18*x + 45*x^2 + 20*x^3)/(1-x)^10.
If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=1..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j), then a(n-3) = (-1)^(n-1)*f(n,3,-7), (n>=3). - Milan Janjic, Mar 01 2009
EXAMPLE
a(3) = (3+3)!*binomial(3+6,6)/3! = (720*84)/6 = 10080. - Indranil Ghosh, Feb 23 2017
MATHEMATICA
Table[(n+3)!*Binomial[n+6, 6]/3!, {n, 0, 15}] (* Indranil Ghosh, Feb 23 2017 *)
PROG
(Sage) [binomial(n, 6)*factorial(n-3)/factorial(3) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
(PARI) a(n) =(n+3)!*binomial(n+6, 6)/3! \\ Indranil Ghosh, Feb 23 2017
(Python)
import math
f=math.factorial
def C(n, r):
return f(n)/f(r)/f(n-r)
def A062142(n):return f(n+3)*C(n+6, 6)/f(3) # Indranil Ghosh, Feb 23 2017
(Magma) [Factorial(n+3)*Binomial(n+6, 6)/6: n in [0..20]]; // G. C. Greubel, May 12 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved