The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062142 Fourth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x). 2
 1, 28, 560, 10080, 176400, 3104640, 55883520, 1037836800, 19978358400, 399567168000, 8310997094400, 179819755315200, 4045944494592000, 94612855873536000, 2297740785500160000, 57903067794604032000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..400 FORMULA a(n) = (n+3)!*binomial(n+6, 6)/3!; e.g.f.: (1+18*x+45*x^2+20*x^3)/(1-x)^10. If we define f(n,i,x)= sum(sum(binomial(k,j)*stirling1(n,k)*stirling2(j,i)*x^(k-j),j=i..k),k=i..n) then a(n-3)=(-1)^(n-1)*f(n,3,-7), (n>=3). [Milan Janjic, Mar 01 2009] EXAMPLE a(3) = (3+3)!*binomial(3+6,6)/3! = (720*84)/6 = 10080. - Indranil Ghosh, Feb 23 2017 MATHEMATICA Table[(n+3)!*Binomial[n+6, 6]/3!, {n, 0, 15}] (* Indranil Ghosh, Feb 23 2017 *) PROG (Sage) [binomial(n, 6)*factorial (n-3)/factorial (3) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009 (PARI) a(n) =(n+3)!*binomial(n+6, 6)/3! \\ Indranil Ghosh, Feb 23 2017 (Python) import math f=math.factorial def C(n, r): ....return f(n)/f(r)/f(n-r) def A062142(n):return f(n+3)*C(n+6, 6)/f(3) # Indranil Ghosh, Feb 23 2017 (MAGMA) [Factorial(n+3)*Binomial(n+6, 6)/6: n in [0..20]]; // G. C. Greubel, May 12 2018 CROSSREFS Cf. A062141. Sequence in context: A278190 A001234 A145149 * A240800 A281125 A234618 Adjacent sequences:  A062139 A062140 A062141 * A062143 A062144 A062145 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 11:54 EST 2020. Contains 332233 sequences. (Running on oeis4.)