login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062142
Fourth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).
2
1, 28, 560, 10080, 176400, 3104640, 55883520, 1037836800, 19978358400, 399567168000, 8310997094400, 179819755315200, 4045944494592000, 94612855873536000, 2297740785500160000, 57903067794604032000
OFFSET
0,2
FORMULA
a(n) = (n+3)!*binomial(n+6, 6)/3!; e.g.f.: (1 + 18*x + 45*x^2 + 20*x^3)/(1-x)^10.
If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=1..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j), then a(n-3) = (-1)^(n-1)*f(n,3,-7), (n>=3). - Milan Janjic, Mar 01 2009
EXAMPLE
a(3) = (3+3)!*binomial(3+6,6)/3! = (720*84)/6 = 10080. - Indranil Ghosh, Feb 23 2017
MATHEMATICA
Table[(n+3)!*Binomial[n+6, 6]/3!, {n, 0, 15}] (* Indranil Ghosh, Feb 23 2017 *)
PROG
(Sage) [binomial(n, 6)*factorial(n-3)/factorial(3) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
(PARI) a(n) =(n+3)!*binomial(n+6, 6)/3! \\ Indranil Ghosh, Feb 23 2017
(Python)
import math
f=math.factorial
def C(n, r):
return f(n)/f(r)/f(n-r)
def A062142(n):return f(n+3)*C(n+6, 6)/f(3) # Indranil Ghosh, Feb 23 2017
(Magma) [Factorial(n+3)*Binomial(n+6, 6)/6: n in [0..20]]; // G. C. Greubel, May 12 2018
CROSSREFS
Sequence in context: A346322 A001234 A145149 * A240800 A281125 A234618
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved