login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145149
7th column of A145142.
4
1, 28, 546, 9450, 165693, 3065238, 59919431, 1226978753, 26377959608, 598190993400, 14328713682920, 361513209493800, 9581318478006976, 266382420824204560, 7761376103890530800, 236610865058490439440, 7532969497593532001856, 250026557590986469841856
OFFSET
8,2
LINKS
MAPLE
row:= proc(n) option remember; local f, i, x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 7) *(n-1)!): seq (a(n), n=8..26);
MATHEMATICA
row[n_] := row[n] = Module[{f, i, x, a}, f = Function[Sum[a[i]*#^i, {i, 0, n-1}]]; Function[x, Sum[a[i]*x^i, {i, 0, n-1}] /. First @ Solve[Table[f[i+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^i, {x, 0, n}], {i, 0, n-1}]]]]; a[n_] := If[n == 0, 0, SeriesCoefficient[row[n][x], {x, 0, 7}]*(n-1)!]; Table[a[n], {n, 8, 26}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
CROSSREFS
Cf. A145153.
Sequence in context: A278190 A346322 A001234 * A062142 A240800 A281125
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 03 2008
EXTENSIONS
More terms from Vincenzo Librandi, Feb 15 2014
STATUS
approved