login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145152
Triangle T(k,m), k>= - 3, 1<=m<=k + 4, read by rows: T(k,m) is the coefficient of a_k(n - m) in the recursive evaluation of a_k(n), where a_k is the k - th column sequence of A145153.
9
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 2, -1, 0, 1, -1, 0, 3, -3, 1, 1, -2, 1, 0, 4, -6, 4, 0, -3, 3, -1, 0, 5, -10, 10, -4, -3, 6, -4, 1, 0, 6, -15, 20, -14, 1, 9, -10, 5, -1, 0, 7, -21, 35, -34, 15, 8, -19, 15, -6, 1, 0, 8, -28, 56, -69, 49, -7, -27, 34, -21, 7, -1, 0, 9, -36, 84
OFFSET
-3,16
COMMENTS
Rows -3<=k<0 are used to form the shape of a perfect triangle.
LINKS
EXAMPLE
Row k=1 gives [1, 0, 0, 1, 0], so A145153(1,5) = A145153(1,4) + A145153(1,1) = 2.
Triangle begins:
0;
0, 0;
0, 0, 0;
1, 0, 0, 1;
1, 0, 0, 1, 0;
2, -1, 0, 1, -1, 0;
3, -3, 1, 1, -2, 1, 0;
MAPLE
cor:= proc(k) option remember; `if`(k<=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]) end: T:= proc(k, m) local l, j; l:= cor(k); `if`(k<0 or m<0 or m>nops(l), 0, l[m]) end: seq(seq(T(k, m), m=1..k+4), k=-3..13);
MATHEMATICA
cor[k_] := cor[k] = If[k <= 0, {1, 0, 0, 1}, Table[Coefficient[-(1-x-x^4)*(1-x)^(k-1), x, j], {j, 1, k+3}]]; T[k_, m_] := Module[{l, j}, l = cor[k]; If[k<0 || m<0 || m>Length[l], 0, l[[m]]]]; Table[Table[T[k, m], {m, 1, k+4}], {k, -3, 13}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved