Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 21 2014 16:23:53
%S 0,0,0,0,0,0,1,0,0,1,1,0,0,1,0,2,-1,0,1,-1,0,3,-3,1,1,-2,1,0,4,-6,4,0,
%T -3,3,-1,0,5,-10,10,-4,-3,6,-4,1,0,6,-15,20,-14,1,9,-10,5,-1,0,7,-21,
%U 35,-34,15,8,-19,15,-6,1,0,8,-28,56,-69,49,-7,-27,34,-21,7,-1,0,9,-36,84
%N Triangle T(k,m), k>= - 3, 1<=m<=k + 4, read by rows: T(k,m) is the coefficient of a_k(n - m) in the recursive evaluation of a_k(n), where a_k is the k - th column sequence of A145153.
%C Rows -3<=k<0 are used to form the shape of a perfect triangle.
%H Alois P. Heinz, <a href="/A145152/b145152.txt">Rows n = -3..137, flattened</a>
%e Row k=1 gives [1, 0, 0, 1, 0], so A145153(1,5) = A145153(1,4) + A145153(1,1) = 2.
%e Triangle begins:
%e 0;
%e 0, 0;
%e 0, 0, 0;
%e 1, 0, 0, 1;
%e 1, 0, 0, 1, 0;
%e 2, -1, 0, 1, -1, 0;
%e 3, -3, 1, 1, -2, 1, 0;
%p cor:= proc(k) option remember; `if`(k<=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]) end: T:= proc(k,m) local l, j; l:= cor(k); `if`(k<0 or m<0 or m>nops(l), 0, l[m]) end: seq(seq(T(k,m), m=1..k+4), k=-3..13);
%t cor[k_] := cor[k] = If[k <= 0, {1, 0, 0, 1}, Table[Coefficient[-(1-x-x^4)*(1-x)^(k-1), x, j], {j, 1, k+3}]]; T[k_, m_] := Module[{l, j}, l = cor[k]; If[k<0 || m<0 || m>Length[l], 0, l[[m]]]]; Table[Table[T[k, m], {m, 1, k+4}], {k, -3, 13}] // Flatten (* _Jean-François Alcover_, Jan 15 2014, translated from Maple *)
%Y Cf. A145153, A017898, A003269, A098578, A145131, A145132, A145133, A145134, A145135, A145136, A145137.
%K sign,tabl
%O -3,16
%A _Alois P. Heinz_, Oct 03 2008