login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145135
Expansion of x/((1 - x - x^4)*(1 - x)^6).
5
0, 1, 7, 28, 84, 211, 470, 960, 1836, 3334, 5806, 9769, 15973, 25495, 39869, 61266, 92743, 138587, 204790, 299705, 434952, 626669, 897239, 1277674, 1810906, 2556330, 3596075, 5043660, 7055942, 9849608, 13723939, 19092231, 26525165
OFFSET
0,3
COMMENTS
The coefficients of the recursion for a(n) are given by the 7th row of A145152.
LINKS
FORMULA
a(n) = 7a(n-1) -21a(n-2) +35a(n-3) -34a(n-4) +15a(n-5) +8a(n-6) -19a(n-7) +15a(n-8) -6a(n-9) +a(n-10).
MAPLE
col:= proc(k) local l, j, M, n; l:= `if`(k=0, [1, 0, 0, 1], [seq(coeff ( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix(nops(l), (i, j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if`(k=0, n->(M^n)[2, 3], n->(M^n)[1, 2]) end: a:= col(7): seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x / ((1 - x - x^4) (1 - x)^6), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 06 2013 *)
PROG
(PARI) concat(0, Vec(1/(1-x-x^4)/(1-x)^6+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
7th column of A145153. Cf. A145152.
Sequence in context: A369809 A145456 A369808 * A369807 A221141 A144900
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved