OFFSET
0,8
COMMENTS
Number of compositions of 7*n-6 into parts 6 and 7.
LINKS
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-6,1).
FORMULA
G.f. (1-x)^7/((1-x)^7-x^6).
a(n) = A017847(7*n-6) = Sum_{k=0..floor((7*n-6)/6)} binomial(k,7*n-6-6*k) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/6)} binomial(n-1+k,n-6*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))
(PARI) a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 01 2024
STATUS
approved