login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369809
Expansion of 1/(1 - x^6/(1-x)^7).
10
1, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 925, 1730, 3108, 5565, 10388, 20944, 45697, 104673, 242481, 553455, 1229305, 2650221, 5565127, 11465758, 23397041, 47757235, 98317135, 205108561, 433747259, 926655972, 1989584722, 4271185538, 9133958765, 19421679515
OFFSET
0,8
COMMENTS
Number of compositions of 7*n-6 into parts 6 and 7.
FORMULA
G.f. (1-x)^7/((1-x)^7-x^6).
a(n) = A017847(7*n-6) = Sum_{k=0..floor((7*n-6)/6)} binomial(k,7*n-6-6*k) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/6)} binomial(n-1+k,n-6*k).
a(n) = A373912(n)-A373912(n-1). - R. J. Mathar, Jun 24 2024
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))
(PARI) a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 01 2024
STATUS
approved