login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - x^6/(1-x)^7).
10

%I #19 Jun 24 2024 05:52:42

%S 1,0,0,0,0,0,1,7,28,84,210,462,925,1730,3108,5565,10388,20944,45697,

%T 104673,242481,553455,1229305,2650221,5565127,11465758,23397041,

%U 47757235,98317135,205108561,433747259,926655972,1989584722,4271185538,9133958765,19421679515

%N Expansion of 1/(1 - x^6/(1-x)^7).

%C Number of compositions of 7*n-6 into parts 6 and 7.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-6,1).

%F G.f. (1-x)^7/((1-x)^7-x^6).

%F a(n) = A017847(7*n-6) = Sum_{k=0..floor((7*n-6)/6)} binomial(k,7*n-6-6*k) for n > 0.

%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7) for n > 7.

%F a(n) = Sum_{k=0..floor(n/6)} binomial(n-1+k,n-6*k).

%F a(n) = A373912(n)-A373912(n-1). - _R. J. Mathar_, Jun 24 2024

%o (PARI) my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))

%o (PARI) a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));

%Y Cf. A099253, A369805, A369806, A369807, A369808.

%Y Cf. A088305, A095263, A290998, A368475, A369794.

%Y Cf. A000579, A017847.

%K nonn,easy

%O 0,8

%A _Seiichi Manyama_, Feb 01 2024