login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145132
Expansion of x/((1 - x - x^4)*(1 - x)^3).
5
0, 1, 4, 10, 20, 36, 61, 99, 155, 236, 352, 517, 750, 1077, 1534, 2171, 3057, 4287, 5992, 8353, 11620, 16138, 22383, 31012, 42932, 59395, 82129, 113519, 156857, 216687, 299281, 413296, 570681, 787929, 1087805, 1501731, 2073078, 2861710, 3950256, 5452767
OFFSET
0,3
COMMENTS
The coefficients of the recursion for a(n) are given by the 4th row of A145152.
FORMULA
a(n) = 4a(n-1) -6a(n-2) +4a(n-3) -3a(n-5) +3a(n-6) -a(n-7).
EXAMPLE
a(8) = 155 = 4*99 -6*61 +4*36 -3*10 +3*4 -1.
MAPLE
col:= proc(k) local l, j, M, n; l:= `if`(k=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix(nops(l), (i, j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if`(k=0, n->(M^n)[2, 3], n->(M^n)[1, 2]) end: a:= col(4): seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x / ((1 - x - x^4) (1 - x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
LinearRecurrence[{4, -6, 4, 0, -3, 3, -1}, {0, 1, 4, 10, 20, 36, 61}, 40] (* Harvey P. Dale, Apr 04 2014 *)
PROG
(PARI) concat(0, Vec(1/(1-x-x^4)/(1-x)^3+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
4th column of A145153. Cf. A145152.
Sequence in context: A376711 A264924 A008059 * A063758 A131924 A143982
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved