login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A143982
Binomial transform of A079261.
1
0, 0, 1, 4, 10, 20, 36, 64, 120, 240, 496, 1024, 2080, 4160, 8255, 16368, 32504, 64464, 126940, 246640, 470536, 879056, 1607862, 2886800, 5117800, 9046960, 16166475, 29666676, 56666754, 113330260, 236315636, 507817728, 1109184992, 2433554624, 5318390075
OFFSET
1,4
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{k=3..n} C(n,k)*A079261(k).
EXAMPLE
a(11) = [165,330,462,462,330,165,55,11,1] * [1,0,0,0,1,0,0,0,1] = 165+330+1 = 496.
MAPLE
bintrans:= proc(p) proc(n) add(p(k) *binomial(n, k), k=0..n) end end:
f:= proc(n) if isprime(n) and modp(n, 4)=3 then 1 else 0 fi end:
a:= bintrans(f):
seq(a(n), n=1..40);
MATHEMATICA
a[n_] := Sum[Binomial[n, k] Boole[PrimeQ[k] && Mod[k, 4] == 3], {k, 3, n}];
Array[a, 40] (* Jean-François Alcover, May 27 2020 *)
CROSSREFS
Sequence in context: A145132 A063758 A131924 * A000749 A360046 A354696
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 06 2008
STATUS
approved