login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of A079261.
1

%I #12 May 27 2020 07:17:29

%S 0,0,1,4,10,20,36,64,120,240,496,1024,2080,4160,8255,16368,32504,

%T 64464,126940,246640,470536,879056,1607862,2886800,5117800,9046960,

%U 16166475,29666676,56666754,113330260,236315636,507817728,1109184992,2433554624,5318390075

%N Binomial transform of A079261.

%H Alois P. Heinz, <a href="/A143982/b143982.txt">Table of n, a(n) for n = 1..1000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = Sum_{k=3..n} C(n,k)*A079261(k).

%e a(11) = [165,330,462,462,330,165,55,11,1] * [1,0,0,0,1,0,0,0,1] = 165+330+1 = 496.

%p bintrans:= proc(p) proc(n) add(p(k) *binomial(n,k), k=0..n) end end:

%p f:= proc(n) if isprime(n) and modp(n,4)=3 then 1 else 0 fi end:

%p a:= bintrans(f):

%p seq(a(n), n=1..40);

%t a[n_] := Sum[Binomial[n, k] Boole[PrimeQ[k] && Mod[k, 4] == 3], {k, 3, n}];

%t Array[a, 40] (* _Jean-François Alcover_, May 27 2020 *)

%Y Cf. A007318, A079261.

%K nonn

%O 1,4

%A _Alois P. Heinz_, Sep 06 2008