The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A360046 a(n) = Sum_{k=0..floor(n/4)} binomial(n+3,4*k+3) * Catalan(k). 4
 1, 4, 10, 20, 36, 64, 120, 240, 497, 1036, 2158, 4524, 9625, 20816, 45560, 100368, 221915, 492380, 1097302, 2457228, 5526666, 12474000, 28233600, 64061920, 145704327, 332174532, 758977386, 1737703780, 3985847284, 9157908736, 21074460512, 48569746368, 112096071675 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 FORMULA a(n) = binomial(n+3,3) + Sum_{k=0..n-4} a(k) * a(n-k-4). G.f. A(x) satisfies: A(x) = 1/(1-x)^4 + x^4 * A(x)^2. G.f.: 2 / ( (1-x)^2 * ((1-x)^2 + sqrt((1-x)^4 - 4*x^4)) ). D-finite with recurrence (n+4)*a(n) +5*(-n-3)*a(n-1) +10*(n+2)*a(n-2) +10*(-n-1)*a(n-3) +(n+8)*a(n-4) +3*(n-1)*a(n-5)=0. - R. J. Mathar, Jan 25 2023 PROG (PARI) a(n) = sum(k=0, n\4, binomial(n+3, 4*k+3)*binomial(2*k, k)/(k+1)); (PARI) my(N=40, x='x+O('x^N)); Vec(2/((1-x)^2*((1-x)^2+sqrt((1-x)^4-4*x^4)))) CROSSREFS Cf. A086615, A360045, A360047. Cf. A000108. Sequence in context: A131924 A143982 A000749 * A354696 A275934 A318338 Adjacent sequences: A360043 A360044 A360045 * A360047 A360048 A360049 KEYWORD nonn AUTHOR Seiichi Manyama, Jan 23 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 01:30 EST 2023. Contains 367452 sequences. (Running on oeis4.)