login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145134
Expansion of x/((1 - x - x^4)*(1 - x)^5).
5
0, 1, 6, 21, 56, 127, 259, 490, 876, 1498, 2472, 3963, 6204, 9522, 14374, 21397, 31477, 45844, 66203, 94915, 135247, 191717, 270570, 380435, 533232, 745424, 1039745, 1447585, 2012282, 2793666, 3874331, 5368292, 7432934, 10285505, 14225881, 19667988, 27183173
OFFSET
0,3
COMMENTS
The coefficients of the recursion for a(n) are given by the 6th row of A145152.
LINKS
Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -14, 1, 9, -10, 5, -1).
FORMULA
a(n) = 6a(n-1) -15a(n-2) +20a(n-3) -14a(n-4) +a(n-5) +9a(n-6) -10a(n-7) +5a(n-8) -a(n-9).
MAPLE
col:= proc(k) local l, j, M, n; l:= `if` (k=0, [1, 0, 0, 1], [seq (coeff ( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix (nops(l), (i, j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if` (k=0, n->(M^n)[2, 3], n->(M^n)[1, 2]) end: a:= col(6): seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x / ((1 - x - x^4) (1 - x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
LinearRecurrence[{6, -15, 20, -14, 1, 9, -10, 5, -1}, {0, 1, 6, 21, 56, 127, 259, 490, 876}, 40] (* Harvey P. Dale, Aug 14 2013 *)
PROG
(PARI) concat(0, Vec(1/(1-x-x^4)/(1-x)^5+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
6th column of A145153. Cf. A145152.
Sequence in context: A145455 A346893 A337895 * A256571 A247904 A074745
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved