login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240800 Total number of occurrences of the pattern 1<2<3 in all preferential arrangements (or ordered partitions) of n elements. 5
0, 0, 1, 28, 570, 10700, 200235, 3857672, 77620788, 1641549000, 36576771165, 859032716740, 21251178078702, 553095031003060, 15122143306215855, 433634860865610320, 13020228528050054760, 408687299328542444880, 13389274565474007735009, 457150279686453405468780 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

There are A000670(n) preferential arrangements of n elements - see A000670, A240763.

The number that avoid the pattern 1<2<3 is given in A226316.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..120

FORMULA

a(n) ~ n! * n^3 / (72 * (log(2))^(n+1)). - Vaclav Kotesovec, May 03 2015

MAPLE

b:= proc(n, t, h) option remember; `if`(n=0, [1, 0], add((p-> p+

      [0, p[1]*j*h/6])(b(n-j, t+j, h+j*t))*binomial(n, j), j=1..n))

    end:

a:= n-> b(n, 0$2)[2]:

seq(a(n), n=1..25);  # Alois P. Heinz, Dec 08 2014

MATHEMATICA

b[n_, t_, h_] := b[n, t, h] = If[n == 0, {1, 0}, Sum[Function[{p}, p + {0, p[[1]]*j*h/6}][b[n - j, t + j, h + j*t]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0, 0][[2]]; Table[a[n], {n, 1, 25}] (* Jean-Fran├žois Alcover, Jun 08 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A000670, A240763, A240796-A240800, A226316.

Sequence in context: A001234 A145149 A062142 * A281125 A234618 A107397

Adjacent sequences:  A240797 A240798 A240799 * A240801 A240802 A240803

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Apr 13 2014

EXTENSIONS

a(8)-a(20) from Alois P. Heinz, Dec 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 01:16 EST 2021. Contains 349344 sequences. (Running on oeis4.)