The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240800 Total number of occurrences of the pattern 1<2<3 in all preferential arrangements (or ordered partitions) of n elements. 5
 0, 0, 1, 28, 570, 10700, 200235, 3857672, 77620788, 1641549000, 36576771165, 859032716740, 21251178078702, 553095031003060, 15122143306215855, 433634860865610320, 13020228528050054760, 408687299328542444880, 13389274565474007735009, 457150279686453405468780 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS There are A000670(n) preferential arrangements of n elements - see A000670, A240763. The number that avoid the pattern 1<2<3 is given in A226316. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..120 FORMULA a(n) ~ n! * n^3 / (72 * (log(2))^(n+1)). - Vaclav Kotesovec, May 03 2015 MAPLE b:= proc(n, t, h) option remember; `if`(n=0, [1, 0], add((p-> p+       [0, p[1]*j*h/6])(b(n-j, t+j, h+j*t))*binomial(n, j), j=1..n))     end: a:= n-> b(n, 0\$2)[2]: seq(a(n), n=1..25);  # Alois P. Heinz, Dec 08 2014 MATHEMATICA b[n_, t_, h_] := b[n, t, h] = If[n == 0, {1, 0}, Sum[Function[{p}, p + {0, p[[1]]*j*h/6}][b[n - j, t + j, h + j*t]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0, 0][[2]]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Jun 08 2015, after Alois P. Heinz *) CROSSREFS Cf. A000670, A240763, A240796-A240800, A226316. Sequence in context: A001234 A145149 A062142 * A281125 A234618 A107397 Adjacent sequences:  A240797 A240798 A240799 * A240801 A240802 A240803 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 13 2014 EXTENSIONS a(8)-a(20) from Alois P. Heinz, Dec 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 01:16 EST 2021. Contains 349344 sequences. (Running on oeis4.)