The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240799 Total number of occurrences of the pattern 1=2<3 in all preferential arrangements (or ordered partitions) of n elements. 1
 0, 0, 1, 20, 310, 4660, 72485, 1193080, 20938764, 392485560, 7850724915, 167242351100, 3785057708146, 90775554103052, 2301045251519105, 61499717442074800, 1729026306941190680, 51022485837639054768, 1577126907722325214959, 50967150013960792511700 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS There are A000670(n) preferential arrangements of n elements - see A000670, A240763. The number that avoid the pattern 1=2<3 is given in A001710 (1,3,12,60,360,...). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..420 FORMULA a(n) ~ n! * n^2 / (24 * (log(2))^n). - Vaclav Kotesovec, May 03 2015 MAPLE b:= proc(n, t) option remember; `if`(n=0, [1, 0], add((p-> p+       [0, p[1]*j*(j-1)*t/6])(b(n-j, t+j))*binomial(n, j), j=1..n))     end: a:= n-> b(n, 0)[2]: seq(a(n), n=1..25);  # Alois P. Heinz, Dec 08 2014 MATHEMATICA b[n_, t_] := b[n, t] = If[n==0, {1, 0}, Sum[Function[p, p+{0, p[[1]]*j*(j-1)*t/6}][b[n-j, t+j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0][[2]]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *) CROSSREFS Cf. A000670, A240763, A240796-A240800, A001710. Sequence in context: A016188 A006300 A282372 * A281931 A034094 A011197 Adjacent sequences:  A240796 A240797 A240798 * A240800 A240801 A240802 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 13 2014 EXTENSIONS a(8)-a(20) from Alois P. Heinz, Dec 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 01:24 EST 2021. Contains 349396 sequences. (Running on oeis4.)