login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of occurrences of the pattern 1<2<3 in all preferential arrangements (or ordered partitions) of n elements.
5

%I #15 Jun 08 2015 06:32:59

%S 0,0,1,28,570,10700,200235,3857672,77620788,1641549000,36576771165,

%T 859032716740,21251178078702,553095031003060,15122143306215855,

%U 433634860865610320,13020228528050054760,408687299328542444880,13389274565474007735009,457150279686453405468780

%N Total number of occurrences of the pattern 1<2<3 in all preferential arrangements (or ordered partitions) of n elements.

%C There are A000670(n) preferential arrangements of n elements - see A000670, A240763.

%C The number that avoid the pattern 1<2<3 is given in A226316.

%H Alois P. Heinz, <a href="/A240800/b240800.txt">Table of n, a(n) for n = 1..120</a>

%F a(n) ~ n! * n^3 / (72 * (log(2))^(n+1)). - _Vaclav Kotesovec_, May 03 2015

%p b:= proc(n, t, h) option remember; `if`(n=0, [1, 0], add((p-> p+

%p [0, p[1]*j*h/6])(b(n-j, t+j, h+j*t))*binomial(n, j), j=1..n))

%p end:

%p a:= n-> b(n, 0$2)[2]:

%p seq(a(n), n=1..25); # _Alois P. Heinz_, Dec 08 2014

%t b[n_, t_, h_] := b[n, t, h] = If[n == 0, {1, 0}, Sum[Function[{p}, p + {0, p[[1]]*j*h/6}][b[n - j, t + j, h + j*t]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0, 0][[2]]; Table[a[n], {n, 1, 25}] (* _Jean-François Alcover_, Jun 08 2015, after _Alois P. Heinz_ *)

%Y Cf. A000670, A240763, A240796-A240800, A226316.

%K nonn

%O 1,4

%A _N. J. A. Sloane_, Apr 13 2014

%E a(8)-a(20) from _Alois P. Heinz_, Dec 08 2014