login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240798
Total number of occurrences of the pattern 1=2=3 in all preferential arrangements (or ordered partitions) of n elements.
2
0, 0, 1, 12, 130, 1500, 18935, 262248, 3972612, 65500200, 1169398065, 22494463860, 464072915878, 10225330604580, 239720548513355, 5959152063448080, 156592569864940040, 4337574220496785680, 126329273251232688069, 3859509516112803668220, 123426111134706786806890
OFFSET
1,4
COMMENTS
There are A000670(n) preferential arrangements of n elements - see A000670, A240763.
The number that avoid the pattern 1=2=3 is given in A080599.
LINKS
FORMULA
a(n) ~ n! * n / (12 * (log(2))^(n-1)). - Vaclav Kotesovec, May 03 2015
MAPLE
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+
[0, p[1]*binomial(j, 3)])(b(n-j))*binomial(n, j), j=1..n))
end:
a:= n-> b(n)[2]:
seq(a(n), n=1..25); # Alois P. Heinz, Dec 08 2014
MATHEMATICA
b[n_] := b[n] = If[n==0, {1, 0}, Sum[Function[p, p+{0, p[[1]]*Binomial[j, 3]} ][b[n-j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n][[2]]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 13 2014
EXTENSIONS
a(8)-a(21) from Alois P. Heinz, Dec 08 2014
STATUS
approved