|
|
A097783
|
|
Chebyshev polynomials S(n,11) + S(n-1,11) with Diophantine property.
|
|
12
|
|
|
1, 12, 131, 1429, 15588, 170039, 1854841, 20233212, 220710491, 2407582189, 26262693588, 286482047279, 3125039826481, 34088956044012, 371853476657651, 4056299287190149, 44247438682433988, 482665526219583719, 5265073349732986921, 57433141320843272412
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
All positive integer solutions of Pell equation (3*a(n))^2 - 13*b(n)^2 = -4 together with b(n)=A078922(n+1), n>=0.
a(n) = L(n,-11)*(-1)^n, where L is defined as in A108299; see also A078922 for L(n,+11). - Reinhard Zumkeller, Jun 01 2005
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..963
Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
Eric Weisstein's World of Mathematics, Fibonacci Polynomial
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
Index entries for sequences related to Chebyshev polynomials.
Index entries for linear recurrences with constant coefficients, signature (11,-1).
|
|
FORMULA
|
a(n) = S(n, 11) + S(n-1, 11) = S(2*n, sqrt(13)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) = 0 = U(-1, x).
a(n) = (-2/3)*i*((-1)^n)*T(2*n+1, 3*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-11*x+x^2).
a(n) = 11*a(n-1) - a(n-2) with a(0)=1 and a(1)=12. - Philippe Deléham, Nov 17 2008
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 12, 0, 131, 0, 1429, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -9, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.
b(n) = 1/2*( (-1)^n - 1 )*F(n,3) + 1/3*( 1 + (-1)^(n+1) )*F(n+1,3), where F(n,x) is the n-th Fibonacci polynomial. The o.g.f. is x*(1 + x^2)/(1 - 11*x^2 + x^4).
Exp( Sum_{n >= 1} 6*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*x^n.
Exp( Sum_{n >= 1} (-6)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
|
|
EXAMPLE
|
All positive solutions to the Pell equation x^2 - 13*y^2 = -4 are (3=3*1,1), (36=3*12,10), (393=3*131,109), (4287=3*1429,1189 ), ...
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x) / (1 - 11 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 22 2015 *)
|
|
PROG
|
(Sage) [(lucas_number2(n, 11, 1)-lucas_number2(n-1, 11, 1))/9 for n in range(1, 19)] # Zerinvary Lajos, Nov 10 2009
(PARI) Vec((1+x)/(1-11*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
(Magma) I:=[1, 12]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
|
|
CROSSREFS
|
Cf. S(n, 11) = A004190(n).
Cf. A000045, A002315, A004146, A006190, A100047, A113224, A192425.
Sequence in context: A341588 A240798 A160962 * A260018 A078218 A305261
Adjacent sequences: A097780 A097781 A097782 * A097784 A097785 A097786
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Wolfdieter Lang, Aug 31 2004
|
|
STATUS
|
approved
|
|
|
|