login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113224
a(2n) = A002315(n), a(2n+1) = A082639(n+1).
10
1, 2, 7, 16, 41, 98, 239, 576, 1393, 3362, 8119, 19600, 47321, 114242, 275807, 665856, 1607521, 3880898, 9369319, 22619536, 54608393, 131836322, 318281039, 768398400, 1855077841, 4478554082, 10812186007, 26102926096, 63018038201
OFFSET
0,2
COMMENTS
From Paul D. Hanna, Oct 22 2005: (Start)
The logarithmic derivative of this sequence is twice the g.f. of A113282, where a(2*n) = A113282(2*n), a(4*n+1) = A113282(4*n+1) - 3, a(4*n+3) = A113282(4*n+3) - 1.
Equals the self-convolution of integer sequence A113281. (End)
With an offset of 1, this sequence is the case P1 = 2, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 19 2015
Floretion Algebra Multiplication Program, FAMP Code: -2ibaseiseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e
LINKS
Creighton Dement, Floretion Online Multiplier. [broken link]
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
G.f.: (1+x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
a(n+2) - a(n+1) - a(n) = A100828(n+1).
a(n) = -(u^(n+1)-1)*(v^(n+1)-1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
a(n) = n * Sum_{k=1..n} Sum_{i=ceiling((n-k)/2)..n-k} binomial(i,n-k-i)*binomial(k+i-1,k-1)*(1-(-1)^k)/(2*k). - Vladimir Kruchinin, Apr 11 2011
a(n) = A001333(n+1) - A000035(n). - R. J. Mathar, Apr 12 2011
a(n) = floor((1+sqrt(2))^(n+1)/2). - Bruno Berselli, Feb 06 2013
From Peter Bala, Mar 19 2015: (Start)
a(n) = (1/2) * A129744(n+1).
exp( Sum_{n >= 1} 2*a(n-1)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
a(n) = A105635(n-1) + A105635(n+1). - R. J. Mathar, Mar 23 2023
MATHEMATICA
a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
LinearRecurrence[{2, 2, -2, -1}, {1, 2, 7, 16}, 30] (* Harvey P. Dale, Oct 10 2017 *)
PROG
(PARI) {a(n)=local(x=X+X*O(X^n)); polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2), n, X)} \\ Paul D. Hanna
(Maxima) a(n):=n*sum(sum(binomial(i, n-k-i)*binomial(k+i-1, k-1), i, ceiling((n-k)/2), n-k)*(1-(-1)^k)/(2*k), k, 1, n); /* Vladimir Kruchinin, Apr 11 2011 */
(Magma) [Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Oct 18 2005
STATUS
approved