Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Sep 07 2024 21:10:25
%S 1,2,7,16,41,98,239,576,1393,3362,8119,19600,47321,114242,275807,
%T 665856,1607521,3880898,9369319,22619536,54608393,131836322,318281039,
%U 768398400,1855077841,4478554082,10812186007,26102926096,63018038201
%N a(2n) = A002315(n), a(2n+1) = A082639(n+1).
%C From _Paul D. Hanna_, Oct 22 2005: (Start)
%C The logarithmic derivative of this sequence is twice the g.f. of A113282, where a(2*n) = A113282(2*n), a(4*n+1) = A113282(4*n+1) - 3, a(4*n+3) = A113282(4*n+3) - 1.
%C Equals the self-convolution of integer sequence A113281. (End)
%C With an offset of 1, this sequence is the case P1 = 2, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Mar 19 2015
%C Floretion Algebra Multiplication Program, FAMP Code: -2ibaseiseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e
%H Creighton Dement, <a href="http://fumba.eu/sitelayout/Floretion.php">Floretion Online Multiplier</a>. [broken link]
%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-2,-1).
%F G.f.: (1+x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
%F a(n+2) - a(n+1) - a(n) = A100828(n+1).
%F a(n) = -(u^(n+1)-1)*(v^(n+1)-1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - _Vladeta Jovovic_, May 30 2007
%F a(n) = n * Sum_{k=1..n} Sum_{i=ceiling((n-k)/2)..n-k} binomial(i,n-k-i)*binomial(k+i-1,k-1)*(1-(-1)^k)/(2*k). - _Vladimir Kruchinin_, Apr 11 2011
%F a(n) = A001333(n+1) - A000035(n). - _R. J. Mathar_, Apr 12 2011
%F a(n) = floor((1+sqrt(2))^(n+1)/2). - _Bruno Berselli_, Feb 06 2013
%F From _Peter Bala_, Mar 19 2015: (Start)
%F a(n) = (1/2) * A129744(n+1).
%F exp( Sum_{n >= 1} 2*a(n-1)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
%F a(n) = A105635(n-1) + A105635(n+1). - _R. J. Mathar_, Mar 23 2023
%t a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* _Jean-François Alcover_, Feb 26 2013, after _Vladimir Kruchinin_ *)
%t CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Mar 20 2015 *)
%t LinearRecurrence[{2,2,-2,-1},{1,2,7,16},30] (* _Harvey P. Dale_, Oct 10 2017 *)
%o (PARI) {a(n)=local(x=X+X*O(X^n));polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2),n,X)} \\ _Paul D. Hanna_
%o (Maxima) a(n):=n*sum(sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k)*(1-(-1)^k)/(2*k),k,1,n); /* _Vladimir Kruchinin_, Apr 11 2011 */
%o (Magma) [Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // _Vincenzo Librandi_, Mar 20 2015
%Y Cf. A113225, A002315, A082639, A100828, A113281, A113282, A113283, A113284, A129744.
%K nonn,easy
%O 0,2
%A _Creighton Dement_, Oct 18 2005