The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113227 Number of permutations avoiding the pattern 1-23-4. 5
1, 1, 2, 6, 23, 105, 549, 3207, 20577, 143239, 1071704, 8555388, 72442465, 647479819, 6083742438, 59885558106, 615718710929, 6595077685263, 73424063891526, 847916751131054, 10138485386085013, 125310003360265231 (list; graph; refs; listen; history; text; internal format)
a(n) is the number of permutations on [n] that avoid the mixed consecutive/scattered pattern 1-23-4 (also number that avoid 4-32-1).
From David Callan, Jul 25 2008: (Start)
a(n) appears to also count vertical-marked parallelogram polyominoes of perimeter 2n+2; vertical-marked means that for each vertical line that splits the polyomino into two nonempty polyominoes one of the unit segments on the common boundary is marked.
For example, the polyomino above, with n=5, has two such vertical lines, the left line giving only one choice for marking and the right line giving two choices. (End)
Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for vincular patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011.
Nicholas R. Beaton, Mathilde Bouvel, Veronica Guerrini, Simone Rinaldi, Enumerating five families of pattern-avoiding inversion sequences; and introducing the powered Catalan numbers, arXiv:1808.04114 [math.CO], 2018.
David Callan, A bijection to count (1-23-4)-avoiding permutations, arXiv:1008.2375 [math.CO], 2010.
Sylvie Corteel, Megan A. Martinez, Carla D. Savage, Michael Weselcouch, Patterns in Inversion Sequences I, arXiv:1510.05434 [math.CO], 2015.
Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005.
Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. in Appl. Math. 36 (2006), no. 2, 138-155.
Steven Finch, Pattern-Avoiding Permutations [Broken link?]
Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission]
Zhicong Lin, Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
Zhicong Lin and Shishuo Fu, On 120-avoiding inversion and ascent sequences, arXiv:2003.11813 [math.CO], 2020.
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
In the recurrence coded in Mathematica below, v[n, a] is the number of permutations on [n] that avoid the 3-letter pattern 1-23 and start with a; u[n, a, m, k] is the number of 1-23-4-avoiding permutations on [n] that start with a, have n in position k and for which m is the minimum of the first k-1 entries. In the last sum, j is the number of entries lying strictly between a and n both in value and position.
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = the upper left term in M^n, M = the production matrix:
1, 1
1, 2, 1
1, 2, 3, 1
1, 2, 3, 4, 1
1, 2, 3, 4, 5, 1
G.f.: 1+x/(U(0)-x) where U(k)= 1 - x*k - x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
12534 contains a scattered 1-2-3-4 pattern (1234 itself) but not a 1-23-4 because the 2 and 3 are not adjacent in the permutation.
Clear[u, v, w]; v[n_, a_] := v[n, a] = Sum[StirlingS2[a-1, i-1]i^(n-a), {i, a}]; u[0]=u[1]=1; u[n_]/; n>=2 := u[n] = Sum[u[n, a], {a, n}]; u[1, 1]=u[2, 1]=u[2, 2]=1; u[n_, a_]/; n>=3 && a==n := u[n-1]; u[n_, a_]/; n>=3 && a<n := u[n, a] = u[n, a, a, 2] + Sum[u[n, a, m, k], {k, 3, n}, {m, Min[a, n-k+1]}]; u[n_, a_, m_, k_]/; n>=3 && k==2 && a<n && m==a := u[n-1, a]; u[n_, a_, m_, k_]/; n>=3 && k>=3 && a<n && m==a := bi[n-a-1, k-2]v[k-1, 1]u[n-k+1, a]; u[n_, a_, m_, k_]/; n>=3 && k>=3 && a<n && m<=Min[a-1, n-k+1] := Sum[bi[n-a-1, j]bi[a-m-1, k-3-j]v[k-1, k-1-j]u[n-k+1, m], {j, Max[0, k-2-(a-m)], Min[n-a-1, k-3]}]; Table[u[n], {n, 0, 15}]
Sequence in context: A137547 A137548 A080108 * A200406 A165489 A352367
David Callan, Oct 19 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 20:41 EDT 2023. Contains 365714 sequences. (Running on oeis4.)