login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113229
Number of permutations avoiding the consecutive pattern 3412.
8
1, 1, 2, 6, 23, 110, 631, 4223, 32301, 277962, 2657797, 27954521, 320752991, 3987045780, 53372351265, 765499019221, 11711207065229, 190365226548070, 3276401870322033, 59523410471007913, 1138295039078030599, 22856576346825690128, 480807130959249565541
OFFSET
0,3
COMMENTS
a(n) is the number of permutations on [n] that avoid the consecutive pattern 3412 (also number that avoid 2143).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 0..60 from Ray Chandler)
V. Dotsenko and A. Khoroshkin, Shuffle algebras, homology, and consecutive pattern avoidance, arXiv preprint arXiv:1109.2690 [math.CO], 2011.
Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005.
Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. in Appl. Math. 36 (2006), no. 2, 138-155.
S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125.
Steven Finch, Pattern-Avoiding Permutations [Broken link?]
Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission]
FORMULA
The Dotsenko et al. reference gives a g.f. There is an associated triangle of numbers c_{n,l} that should be added to the OEIS if it is not already present.
a(n) ~ c * d^n * n!, where d = 0.9561742431150784273897350385923872770208469..., c = 1.1465405299007850875068632404058971045769... . - Vaclav Kotesovec, Aug 23 2014
EXAMPLE
The 5! - a(5) = 10 permutations on [5] not counted by a(5) are 14523, 24513, 34125, 34512, 35124, 43512, 45123, 45132, 45231, 53412.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, `if`(t>0 and j>t, t-j, 0)), j=1..u)+
add(b(u+j-1, o-j, j), j=`if`(t<0, 1-t, 1)..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 07 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, If[t>0 && j>t, t-j, 0]], {j, 1, u}] + Sum[b[u+j-1, o-j, j], {j, Range[If[t<0, 1-t, 1], o]}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
CROSSREFS
Column k=0 of A264319.
Sequence in context: A117226 A117156 A201692 * A113228 A201693 A063255
KEYWORD
nonn
AUTHOR
David Callan, Oct 19 2005
STATUS
approved