login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117226
Number of permutations of [n] avoiding the consecutive pattern 1243.
12
1, 1, 2, 6, 23, 110, 630, 4204, 32054, 274914, 2619692, 27459344, 313990182, 3889585408, 51888955808, 741668212080, 11307669002720, 183174676857608, 3141820432768752, 56882461258572976, 1084056190235653304, 21692744773505849952, 454758269790599361968
OFFSET
0,3
COMMENTS
a(n) is the number of permutations on [n] that avoid the consecutive pattern 1243. It is the same as the number of permutations which avoid 3421, 4312 or 2134.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 0..60 from Ray Chandler)
Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see p. 120.
Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005.
Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. Appl. Math. 36 (2006), 138-155.
Steven Finch, Pattern-Avoiding Permutations. [Archived copy]
Steven Finch, Pattern-Avoiding Permutations. [Cached copy, with permission]
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
a(n) ~ c * d^n * n!, where d = 0.952891423325053197208702817349165942637814..., c = 1.169657787464830219717093446929792145316... . - Vaclav Kotesovec, Aug 23 2014
From Petros Hadjicostas, Nov 01 2019:
E.g.f.: 1/W(z), where W(z) := 1 + Sum_{n >= 0} (-1)^(n+1)* z^(3*n+1)/(b(n)*(3*n+1)) with b(n) = A176730(n) = (3*n)!/(3^n*(1/3)_n). (Here (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol, or rising factorial, which is denoted by (x)^n in some papers and books.) The function W(z) satisfies the o.d.e. W'''(z) + z*W'(z) = 0 with W(0) = 1, W'(0) = -1, and W''(0) = 0. [See Theorem 4.3 (Case 1243 with u = 0) in Elizalde and Noy (2003).]
a(n) = Sum_{m = 0..floor((n-1)/3)} (-3)^m * (1/3)_m * binomial(n, 3*m+1) * a(n-3*m-1) for n >= 1 with a(0) = 1. (End)
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, 0), j=`if`(t<0, -t, 1)..u)+
add(b(u+j-1, o-j, `if`(t=0, j, -j)), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 07 2013
MATHEMATICA
A[x_]:=Integrate[AiryAi[ -t], {t, 0, x}]; B[x_]:=Integrate[AiryBi[ -t], {t, 0, x}];
c=-3^(2/3)*Gamma[2/3]/2; d=-3^(1/6)*Gamma[2/3]/2;
a[n_]:=SeriesCoefficient[1/(c*A[x]+d*B[x]+1), {x, 0, n}]*n!; Table[a[n], {n, 0, 10}] (* fixed by Vaclav Kotesovec, Aug 23 2014 *)
(* constant d: *) 1/x/.FindRoot[3^(2/3)*Gamma[2/3]/2 * Integrate[AiryAi[-t], {t, 0, x}] + 3^(1/6)*Gamma[2/3]/2 * Integrate[AiryBi[-t], {t, 0, x}]==1, {x, 1}, WorkingPrecision->50] (* Vaclav Kotesovec, Aug 23 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Steven Finch, Apr 26 2006
STATUS
approved