|
|
A117224
|
|
Numbers for which the square and the cube have the same digital sum.
|
|
2
|
|
|
0, 1, 3, 6, 10, 24, 28, 30, 37, 60, 64, 81, 87, 93, 100, 114, 118, 136, 163, 219, 222, 228, 234, 240, 252, 258, 267, 273, 276, 280, 291, 294, 300, 312, 316, 342, 343, 370, 384, 387, 433, 447, 468, 469, 477, 478, 507, 525, 534, 537, 541, 585, 591, 600, 606, 613
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
EXAMPLE
|
24 is in the sequence because 24^2 = 576, 24^3 = 13824 and 5 + 7 + 6 = 1 + 3 + 8 + 2 + 4.
|
|
MAPLE
|
a:=proc(n) local nn, nnn: nn:=convert(n^2, base, 10): nnn:=convert(n^3, base, 10): if sum(nn[i], i=1..nops(nn))=sum(nnn[j], j=1..nops(nnn)) then n else fi end: seq(a(n), n=0..620); # Emeric Deutsch, Apr 27 2006
|
|
MATHEMATICA
|
scdsQ[n_]:=Total[IntegerDigits[n^2]]==Total[IntegerDigits[n^3]]; Select[ Range[ 0, 700], scdsQ] (* Harvey P. Dale, Jan 23 2019 *)
|
|
PROG
|
(Magma) [n: n in [0..613] | &+Intseq(n^2) eq &+Intseq(n^3)]; // Bruno Berselli, Jun 28 2011
(PARI) is(n) = sumdigits(n^2) == sumdigits(n^3) \\ David A. Corneth, Sep 05 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
Luc Stevens (lms022(AT)yahoo.com), Apr 21 2006
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|