login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058369
Numbers k such that k and k^2 have same digit sum.
24
0, 1, 9, 10, 18, 19, 45, 46, 55, 90, 99, 100, 145, 180, 189, 190, 198, 199, 289, 351, 361, 369, 379, 388, 450, 451, 459, 460, 468, 495, 496, 550, 558, 559, 568, 585, 595, 639, 729, 739, 775, 838, 855, 900, 954, 955, 990, 999, 1000, 1098, 1099, 1179, 1188, 1189
OFFSET
1,3
COMMENTS
It is interesting that the graph of this sequence appears almost identical as the maximum value of n increases by factors of 10. Compare the graph of the b-file (having numbers up to 10^6) with the plot of the terms up to 10^8. - T. D. Noe, Apr 28 2012
If iterated digit sum (A010888, A056992) is used instead of just digit sum (A007953, A004159), we get A090570 of which this sequence is a subset. - Jeppe Stig Nielsen, Feb 18 2015
Hare, Laishram, & Stoll show that this sequence (indeed, even its subsequence A254066) is infinite. In particular for each k in {846, 847, 855, 856, 864, 865, 873, ...} there are infinitely many terms in this sequence not divisible by 10 that have digit sum k. - Charles R Greathouse IV, Aug 25 2015
There are infinitely many n such that both n and n+1 are in the sequence. This includes A002283. - Robert Israel, Aug 26 2015
LINKS
Zak Seidov, Table of n, a(n) for n = 1..8354 (to a(n) = 10^6)
Code Golf StackExchange, Equality in the sum of digits, coding challenge started Mar 11 2016.
K. G. Hare, S. Laishram, and T. Stoll, The sum of digits of n and n^2, International Journal of Number Theory 7:7 (2011), pp. 1737-1752.
FORMULA
A007953(a(n)) = A004159(a(n)). - Reinhard Zumkeller, Apr 25 2009
EXAMPLE
Digit sum of 9 = 9 9^2 = 81, 8+1 = 9 digit sum of 145 = 1+4+5 = 10 145^2 = 21025, 2+1+0+2+5 = 10 digit sum of 954 = 9+5+4 = 18 954^2 = 910116, 9+1+0+1+1+6 = 18. - Florian Roeseler (hazz_dollazz(AT)web.de), May 03 2010
MAPLE
sd := proc (n) options operator, arrow: add(convert(n, base, 10)[j], j = 1 .. nops(convert(n, base, 10))) end proc: a := proc (n) if sd(n) = sd(n^2) then n else end if end proc; seq(a(n), n = 0 .. 1400); # Emeric Deutsch, May 11 2010
select(t -> convert(convert(t, base, 10), `+`)=convert(convert(t^2, base, 10), `+`),
[seq(seq(9*i+j, j=0..1), i=0..1000)]); # Robert Israel, Aug 26 2015
MATHEMATICA
Select[Range[0, 1200], Total[IntegerDigits[#]]==Total[IntegerDigits[ #^2]]&] (* Harvey P. Dale, Jun 14 2011 *)
PROG
(Haskell)
import Data.List (elemIndices)
import Data.Function (on)
a058369 n = a058369_list !! (n-1)
a058369_list =
elemIndices 0 $ zipWith ((-) `on` a007953) [0..] a000290_list
-- Reinhard Zumkeller, Aug 17 2011
(PARI) is(n)=sumdigits(n)==sumdigits(n^2) \\ Charles R Greathouse IV, Aug 25 2015
(Magma) [n: n in [0..1200] |(&+Intseq(n)) eq (&+Intseq(n^2))]; // Vincenzo Librandi, Aug 26 2015
(Python)
def ds(n): return sum(map(int, str(n)))
def ok(n): return ds(n) == ds(n**2)
def aupto(nn): return [m for m in range(nn+1) if ok(m)]
print(aupto(1189)) # Michael S. Branicky, Jan 09 2021
CROSSREFS
Cf. A147523 (number of numbers in each decade).
Subsequence of A090570.
Sequence in context: A090570 A131417 A268135 * A110939 A260042 A141640
KEYWORD
base,easy,nice,nonn
AUTHOR
G. L. Honaker, Jr., Dec 17 2000
EXTENSIONS
Edited by N. J. A. Sloane, May 30 2010
STATUS
approved