login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058369 Numbers n such that n and n^2 have same digit sum. 15
0, 1, 9, 10, 18, 19, 45, 46, 55, 90, 99, 100, 145, 180, 189, 190, 198, 199, 289, 351, 361, 369, 379, 388, 450, 451, 459, 460, 468, 495, 496, 550, 558, 559, 568, 585, 595, 639, 729, 739, 775, 838, 855, 900, 954, 955, 990, 999, 1000, 1098, 1099, 1179, 1188, 1189 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A007953(a(n)) = A004159(a(n)). - Reinhard Zumkeller, Apr 25 2009

It is interesting that the graph of this sequence appears almost identical as the maximum value of n increases by factors of 10. Compare the graph of the b-file (having numbers up to 10^6) with the plot of the terms up to 10^8. - T. D. Noe, Apr 28 2012

If iterated digit sum (A010888, A056992) is used instead of just digit sum (A007953, A004159), we get A090570 of which this sequence is a subset. - Jeppe Stig Nielsen, Feb 18 2015

Hare, Laishram, & Stoll show that this sequence (indeed, even its subsequence A254066) is infinite. In particular for each k in {846, 847, 855, 856, 864, 865, 873, ...} there are infinitely many terms in this sequence not divisible by 10 that have digit sum k. - Charles R Greathouse IV, Aug 25 2015

There are infinitely many n such that both n and n+1 are in the sequence.  This includes A002283. - Robert Israel, Aug 26 2015

LINKS

Zak Seidov, Table of n, a(n) for n = 1..8354 (to a(n) = 10^6)

K. G. Hare, S. Laishram, and T. Stoll, The sum of digits of n and n^2, International Journal of Number Theory 7:7 (2011), pp. 1737-1752.

T. D. Noe, Plot of terms up to 10^8

EXAMPLE

Digit sum of 9 = 9 9^2 = 81, 8+1 = 9 digit sum of 145 = 1+4+5 = 10 145^2 = 21025, 2+1+0+2+5 = 10 digit sum of 954 = 9+5+4 = 18 954^2 = 910116, 9+1+0+1+1+6 = 18. - Florian Roeseler (hazz_dollazz(AT)web.de), May 03 2010

MAPLE

P:=proc(n) local i, k, w, x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i^2; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; if x=w then print(i); fi; od; end: P(10000); # Paolo P. Lava, Nov 30 2007

sd := proc (n) options operator, arrow: add(convert(n, base, 10)[j], j = 1 .. nops(convert(n, base, 10))) end proc: a := proc (n) if sd(n) = sd(n^2) then n else end if end proc; seq(a(n), n = 0 .. 1400); # Emeric Deutsch, May 11 2010

select(t -> convert(convert(t, base, 10), `+`)=convert(convert(t^2, base, 10), `+`),

[seq(seq(9*i+j, j=0..1), i=0..1000)]); # Robert Israel, Aug 26 2015

MATHEMATICA

Select[Range[0, 1200], Total[IntegerDigits[#]]==Total[IntegerDigits[ #^2]]&] (* Harvey P. Dale, Jun 14 2011 *)

PROG

(Haskell)

import Data.List (elemIndices)

import Data.Function (on)

a058369 n = a058369_list !! (n-1)

a058369_list =

   elemIndices 0 $ zipWith ((-) `on` a007953) [0..] a000290_list

-- Reinhard Zumkeller, Aug 17 2011

(PARI) is(n)=sumdigits(n)==sumdigits(n^2) \\ Charles R Greathouse IV, Aug 25 2015

(MAGMA) [n: n in [0..1200] |(&+Intseq(n)) eq (&+Intseq(n^2))]; // Vincenzo Librandi, Aug 26 2015

CROSSREFS

Cf. A002283, A007953, A058370, A058852, A077436, A254066.

Cf. A147523 (number of numbers in each decade).

Sequence in context: A090570 A131417 A268135 * A110939 A260042 A141640

Adjacent sequences:  A058366 A058367 A058368 * A058370 A058371 A058372

KEYWORD

base,easy,nice,nonn

AUTHOR

G. L. Honaker, Jr., Dec 17 2000

EXTENSIONS

Edited by N. J. A. Sloane, May 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 24 17:40 EDT 2017. Contains 286997 sequences.