login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254066
Primitive numbers n such that the sums of the digits of n and n^2 coincide.
6
1, 9, 18, 19, 45, 46, 55, 99, 145, 189, 198, 199, 289, 351, 361, 369, 379, 388, 451, 459, 468, 495, 496, 558, 559, 568, 585, 595, 639, 729, 739, 775, 838, 855, 954, 955, 999, 1098, 1099, 1179, 1188, 1189, 1198, 1269, 1468, 1485, 1494, 1495, 1585, 1738, 1747
OFFSET
1,2
COMMENTS
Members of A058369 not congruent to 0 (mod 10).
This sequence is to A058369 what A114135 is to A111434.
Hare, Laishram, & Stoll show that this sequence is infinite. In particular for each k in {846, 847, 855, 856, 864, 865, 873, ...} there are infinitely many terms in this sequence with digit sum k. - Charles R Greathouse IV, Aug 25 2015
LINKS
K. G. Hare, S. Laishram, and T. Stoll, The sum of digits of n and n^2, International Journal of Number Theory 7:7 (2011), pp. 1737-1752.
EXAMPLE
9 is in the sequence because the digit sum of 9^2 = 81 is 9.
18 is in the sequence because the digit sum of 18^2 = 324 is 9, same as the digit sum of 18.
MATHEMATICA
Select[Range[1000], !Divisible[#, 10]&&Total[IntegerDigits[#]] == Total[ IntegerDigits[#^2]]&] (* Harvey P. Dale, Dec 27 2015 *)
PROG
(Sage) [n for n in [0..1000] if sum(n.digits())==sum((n^2).digits()) and n%10!=0] # Tom Edgar, Jan 27 2015
(Magma) [n: n in [1..1000] | &+Intseq(n) eq &+Intseq(n^2) and not IsZero(n mod 10)]; // Bruno Berselli, Jan 29 2015
(PARI) is(n)=sumdigits(n)==sumdigits(n^2) \\ Charles R Greathouse IV, Aug 25 2015
(PARI) list(lim)=my(v=List()); forstep(n=1, lim, [8, 9, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 9], if(sumdigits(n)==sumdigits(n^2), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Aug 26 2015
CROSSREFS
Subsequence of A090570.
Sequence in context: A257226 A092457 A062057 * A015785 A366290 A316438
KEYWORD
nonn,base
AUTHOR
Nikhil Mahajan, Jan 25 2015
EXTENSIONS
More terms from Harvey P. Dale, Dec 27 2015
STATUS
approved