login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111434
Numbers k such that the sums of the digits of k, k^2 and k^3 coincide.
5
0, 1, 10, 100, 468, 585, 1000, 4680, 5850, 5851, 5868, 10000, 28845, 46800, 58500, 58510, 58680, 58968, 100000, 288450, 468000, 585000, 585100, 586800, 589680, 1000000, 2884500, 4680000, 5850000, 5851000, 5868000, 5896800, 10000000
OFFSET
1,3
COMMENTS
The sequence is clearly infinite, since we can add trailing zeros. Is the subset of values not ending in 0 infinite too (see A114135)?
LINKS
David A. Corneth, Table of n, a(n) for n = 1..1124 (using the b-file in A114135).
EXAMPLE
468 is in the sequence since 468^2 = 219024 and 468^3 = 102503232 and we have 18 = 4+6+8 = 2+1+9+0+2+4 = 1+0+2+5+0+3+2+3+2.
5851 is in the sequence because 5851, 34234201 (= 5851^2) and 200304310051 (=5851^3) all have digital sum 19.
MAPLE
s:=proc(n) local nn: nn:=convert(n, base, 10): sum(nn[j], j=1..nops(nn)): end: a:=proc(n) if s(n)=s(n^2) and s(n)=s(n^3) then n else fi end: seq(a(n), n=0..1000000); # Emeric Deutsch, May 13 2006
MATHEMATICA
SumOfDig[n_]:=Apply[Plus, IntegerDigits[n]]; Do[s=SumOfDig[n]; If[s==SumOfDig[n^2] && s==SumOfDig[n^3], Print[n]], {n, 10^6}]
Select[Range[0, 10000000], Length[Union[Total/@IntegerDigits[{#, #^2, #^3}]]] == 1&] (* Harvey P. Dale, Apr 26 2014 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Giovanni Resta, Nov 21 2005
EXTENSIONS
b-file Corrected by David A. Corneth, Jul 22 2021
STATUS
approved