The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114135 Primitive numbers n such that the sums of the digits of n, n^2 and n^3 coincide (cf. A111434). 4
 1, 468, 585, 5851, 5868, 28845, 58968, 21688965, 29588877, 37848897, 49879981, 58577797, 79898994, 79958368, 79979698, 89757468, 109699677, 159699969, 468957888, 479597652, 479896587, 480749985, 494899398, 497349981, 498678256 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Members of A111434 not congruent to 0 (mod 10). If k is a member of A111434 then so is 10^e*k. The authors have calculated all members below 10^11. The number of members less than 10^n {n=0..11}: 0,1,1,3,5,7,7,7,16,34,57,125. Number of members congruent to k (mod 10): 0,7,1,0,2,23,8,20,49,15. But more interesting, number of members are congruent to k (mod 9): 66,59,0,0,0,0,0,0,0. A007953(n) == n mod 9.  Since 0 and 1 are the only k in [0,1,...8] with k == k^2 mod 9, all terms are congruent to 0 or 1 mod 9. - Robert Israel, Jan 26 2015 LINKS Toshitaka Suzuki and Nikhil Mahajan, Table of n, a(n) for n = 1..600 (first 325 terms from Toshitaka Suzuki) MATHEMATICA sod[n_] := Plus @@ IntegerDigits@n; lst = {}; Do[ If[(Mod[n, 9] == 0 || Mod[n, 9] == 1) && Mod[n, 10] != 0 && sod@n == sod[n2] == sod[n3], AppendTo[lst, n]], {n, 108/2}]; lst Select[Range[5*10^8], Length[Union[Total/@IntegerDigits/@{#, #^2, #^3}]]==1 && Mod[#, 10]!=0&] (* Harvey P. Dale, Jul 07 2020 *) PROG (PARI) isok(n) = (n % 10) && ((sd=sumdigits(n)) == sumdigits(n^2)) && (sd == sumdigits(n^3)); \\ Michel Marcus, Jan 20 2015 CROSSREFS Cf. A007953, A111434, A005188. Sequence in context: A059395 A266163 A221238 * A043364 A054756 A205415 Adjacent sequences:  A114132 A114133 A114134 * A114136 A114137 A114138 KEYWORD base,nonn AUTHOR Giovanni Resta and Robert G. Wilson v, Nov 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 04:02 EDT 2022. Contains 354112 sequences. (Running on oeis4.)